GPLUS EDUCATION

Tin Mai			CHEMISTRY
	CLASSIFICATION OF ELEMENTS	S AND PERIODICITY	IN PROPERTIES
	Single Cor	rect Answer Type	
1.	Born Haber cycle is used to determine:		
	a) Lattice energy b) Electron affinity	c) Ionization energy	d) Either of them
2.	The electronic configurations of four elements	L, P, Q and R are given below,	
	$L = 1s^2, 2s^22p^4$ $Q = 1s^2, 2s^22p^6, 3s^23p^5$		
	$P = 1s^2, 2s^22p^6, 3s^1$ $R = 1s^2, 2s^22p^6, 3s^2$	- C	- t
	The formula of the ionic compounds that can be a) L_2P , RL , PQ , R_2Q b) LP , RL , PQ , RQ	e formed between these element $c) P_2L, RL, PQ, RQ_2$	nts are: d) <i>LP</i> , <i>R</i> ₂ <i>L</i> , <i>P</i> ₂ <i>Q</i> , <i>RQ</i>
3.	The element with strong electropositive nature		$u_1 L F, K_2 L, F_2 Q, KQ$
J.	a) Cu b) Cs	c) Cr	d) Ba
4.	Octet rule is not valid for the molecule:	e, e.	u) Du
	a) CO ₂ b) H ₂ O	c) 0 ₂	d) CO
5.	The correct order of reactivity of halogens is	, ,	
	a) $F > Br > Cl > I$ b) $F > Cl > Br > I$	c) $I > Br > Cl > F$	d) $Cl > I > Br > F$
6.	$\mathrm{NH_{3}}$ has higher boiling point than expected, be	cause :	
	a) With water it forms NH ₄ OH	<u> </u>	
	b) It has strong intermolecular hydrogen bonds	S	
	c) It has strong intermolecular covalent bonds	LICATION	
7	d) Its density decreases in freezing	UCAHON	
7.	The screening effect of <i>d</i> -electrons is:		
	a) Equal to the <i>p</i>-electronsb) Much more than <i>p</i>-electrons		
	c) Same as <i>f</i> -electrons		
	d) Less than <i>p</i> -electrons		
8.	Which has the largest first ionisation energy?		
	a) Li b) Na	c) K	d) Rb
9.	In which of the following molecules are all the	bonds not equal?	
	a) AlF ₃ b) NF ₃	c) ClF ₃	d) BF ₃
10.	The bond between two identical non-metal ato	ms has a pair of electrons:	
	a) Unequally shared between the two		
	b) Equally shared between the two		
	c) Transferred fully from one atom to another		
11	d) None of the above	anatia diatamia malaanla afan	alamant voith atomia nomban
11.	The number of unpaired electrons in a parama, 16 is:	gnetic diatomic molecule of an	element with atomic number
	a) 4 b) 1	c) 2	d) 3
12.	In NO_3^- ion, number of bond pair and lone pair	•	uj J
	a) 2,2 b) 3,1	c) 1,3	d) 4,8
13.	Which element of second period forms most ac		, -, -
	a) Carbon b) Nitrogen	c) Boron	d) Fluorine
14.	The electronic configuration of four elements a	re given below. Which element	does not belong to the same

	family?					
	a) $[Xe]4f^{14}5d^{10}6s^2$ b) $[Kr]4d^{10}5s^2$	c) [Ne] $3s^23p^5$	d) [Ar] $3d^{10}4s^2$			
15.	For the four successive transition elements (Cr	, Mn, Fe and Co), the stabilit	y of $+2$ oxidation state will be			
	there in which of the following order?	, , , , , , , , , , , , , , , , , , , ,	,			
	(At. no. $Cr = 24$, $Mn = 25$, $Fe = 26$, $Co = 27$)					
		o c) Fe > Mn > Co > Cr	d) Co > Mn > Fe > Cr			
16.	Which is correct in the following?	,	,			
	a) Radius of Cl atom is 0.99 Å, while that of Cl ⁺ i	on is 1 54 Å				
	b) Radius of Cl atom is 0.99 Å, while that of Na a					
	c) The radius of Cl atom is 0.95 Å, while that of 0					
17	d) Radius of Na atom is 0.95 Å, while that of Na ⁺	10n IS 1.54 A				
1/.	The linear structure is possessed by:	-) NO+	T) CC			
10	a) SnCl ₂ b) NCO ⁻	c) NO ₂ ⁺	d) CS ₂			
18.	Which of the following has largest ionic radius?	2.1.4	D.C. +			
4.0	a) Na ⁺ b) K ⁺	c) Li ⁺	d) Cs ⁺			
19.	In the cyanide ion, the formal negative charge is	on:				
	a) C					
	b) N					
	c) Both C and N					
20	d) Resonate between C and N	,				
20.	The size of ionic species is correctly given in the	order:				
	a) $Cl^{7+} > Si^{4+} > Mg^{2+} > Na^{+}$					
	b) $Na^+ > Mg^{2+} > Si^{4+} > Cl^{7+}$					
	c) $Na^+ > Mg^{2+} > Cl^{7+} > Si^{4+}$	-				
	d) $Cl^{7+} > Na^+ > Mg^{2+} > Si^{4+}$					
21.	Which statement is wrong?					
	a) 2nd ionisation energy shows jump in alkali metals					
	b) 2nd electron affinity for halogens is zero	CALIDIA				
	c) Maximum electron affinity exists for F					
22	d) Maximum ionization energy exists for He	alambara dia ang				
ZZ.	Which of the following atoms has minimum covers		מ ע			
22	a) Si b) N	c) C	d) B			
23.	The second electron affinity is zero for	-> M-1-1	D. Troop of the control of			
2.4	a) Alkali metals b) Halogens	c) Noble gases	d) Transition metal			
24.	For alkali metals, which one of the following tre		: > M - > U > DL			
	a) Hydration energy: Li > Na > K > Rb	b) Ionisation energy : I				
25	c) Density: Li < Na < K < Rb	d) Atomic size : Li $<$ No.				
25.	Na_2O , MgO , Al_2O_3 and SiO_2 have heat of formation		576 and			
	-911 kJ mol ⁻¹ respectively. The most stable oxi		1) 6:0			
26	a) Na ₂ O b) MgO	c) Al ₂ O ₃	d) SiO ₂			
26.	If Aufbau rule is not followed, K-19 will be place					
0.7	a) s-block b) p-block	c) <i>d</i> -block	d) <i>f-</i> block			
27.	The electronegativity order of O, F, Cl and Br is:) D > Cl > E > O				
20	a) $F > 0 > Cl > Br$ b) $F > Cl < Br > 0$	c) $Br > Cl > F > 0$	d) F < Cl < Br < 0			
28.	Which has the minimum bond energy?	-) I I	1) 11 11			
20	a) H – Br b) H – I	c) I — I	d) H — H			
Z9.	The bond angle in H_2S (for $H - S - H$) is:					
	a) Same as that of Cl – Be – Cl in BeCl ₂					
	b) Greater than H – N – H bond angle in NH ₃	11				
	c) Greater than $H - Se - H$ and less than $H - O$	— п				

				Gpius Euucutio	
	d) Same as Cl — Sn — Cl in	-			
30.		arrangements, the sequenc	ce is not strictly according t	to the property written	
	against it?				
		${ m PbO_2}$: increasing oxidising	gpower		
	b) $HF < HCl < HBr < HI$: increasing acid strength			
	c) $NH_3 > PH_3 < AsH_3 < C$	${ m SbH_3}$: increasing basic stre	ength		
	d) $B < C < 0 < N$: increa	sing first ionisation enthal	ру		
31.	The tenth elements in the	Periodic Table resembles	with the		
	a) First period	b) Second period	c) Fourth period	d) Ninth period	
32.	Which is not the correct o	rder for the stated propert	•	•	
	a) Ba > Sr > Mg; atomic		b) $F > 0 > N$; first ionisa	ition enthalpy	
	c) $Cl > F > I$; electron aff		d) 0 > Se > Te; electrone		
33.	-		ween two atoms in a molec		
00.	a) Ionic bond	maca pan or oreen one sec		and gives rise to:	
	b) Polar covalent bond				
	c) Non-polar covalent bon	ad			
	d) None of the above	iu			
21	=	idos is most acidis in natur	?		
34.	Which of the following ox			d) PaO	
25	a) BeO	b) MgO	c) CaO	d) BaO	
33.	In the formation of NaCl b		1:		
	a) Sodium and chlorine be				
	b) Sodium and chlorine be				
	c) Sodium loses but chlor		>		
	d) Sodium gains but chlor				
36.	=	e folds of axis of symmetry			
	a) NH ₃	b) PCl ₅	c) SO ₂	d) CO ₂	
37.		ICl has the polar character			
	a) The electronegativity of	of hydrogen is greater than	that of chlorine		
	b) The electronegativity of	of hydrogen is equal to thar	that of chlorine		
	c) The electronegativity of	of chlorine is greater than t	hat of hydrogen		
	d) Hydrogen and chlorine	are gases			
38.	If the bond has zero perce	ent ionic character, the bon	d is:		
	a) Pure covalent	b) Partial covalent	c) Partial ionic	d) Coordinate covalent	
39.	To administration of the state of				
	In piperidine H,N atom ha	as hybridization:			
	a) <i>sp</i>	b) sp^2	c) sp^3	d) dsp^2	
40.	Mendeleef's Periodic Tabl	, .	٠, ٥٢) wop	
	a) Many elements has sev		b) Noble gases do not for	m compounds	
	Some groups stand div	•	d) Atomic weights of elen		
	c) and B	raea meo ewo sab groups n	numbers	nents are not arways whole	
41.	The incorrect statement a	mong the following is:	numbers		
т1.		-	first ionization notantial of	f Ma	
	a) The first ionization potential of Al is less than the first ionization potential of Mgb) The second ionization potential of Mg is greater than the second ionization potential of Na				
			-		
			e first ionization potential o	_	
42			n the third ionization poter	iiuai 01 Ai	
42.		•	-) CO	J) D. O	
40	a) ZnO	b) Na ₂ O	c) SO ₂	d) B_2O_3	
43.	The shape of ClO_4^- ion is:	13.0) m . 1 1 1	12 m + 12 + + + + + + + + + + + + + + + + +	
	a) Square planar	b) Square pyramidal	c) Tetrahedral	d) Trigonal bipyramidal	
44.	Which one is correct?				

	a) Dinitrogen is paramag	netic		•	
	b) Dihydrogen is paramagnetic				
	c) Dioxygen is paramagnetic				
	d) Dioxygen is diamagnet				
45.			second species is greater tl	nan that of the first?	
	a) Na, Mg	b) 0 ²⁻ , N ³⁻	c) Li ⁺ , Be ²⁺	d) Ba ²⁺ , Sr ²⁺	
46.	, ,	nd neon in angstrom unit a	* *	., 2 , 5.	
	a) 0.72, 1.60	b) 1.60, 1.60	c) 0.72, 0.72	d) 1.60, 0.72	
47.	=		ed element has been name		
	number of the element is	,,			
	a) 111	b) 112	c) 109	d) 110	
48.	•	easing electron affinity of h		., 110	
	a) $F < Cl < Br < I$	b) I $< Br < F < Cl$	c) $I > Br > Cl > F$	d) Br $> I > F > Cl$	
49	•	-	elongs to III period. Its mol		
171	a) X	b) X ₂	c) X_4	d) X ₅	
50		· -	n potential of coinage meta	, ,	
001	a) $Cu > Ag > Au$	b) Cu < Ag < Au	c) $Cu > Ag < Au$	d) Ag > Cu < Au	
51.	The bond length is maxin	=	c) da z rig (ria	ujiig > du \iiu	
51.	a) H ₂ S	b) HF	c) H ₂ O	d) Ice	
52	· -	the most electropositive el	· -	u) icc	
32.	a) P	b) S	c) Mg	d) Al	
53	*	ve nearly same atomic radi	, ,	u) Ai	
55.	a) Na, K, Rb, Cs	b) Li, Be, B, C	c) Fe, Co, Ni, Cu	d) F, Cl, Br, I	
54	Which of the following st		c) 1 c, co, 1v1, cu	ujī, di, bī, ī	
JT.	a) Metals are more than i				
	b) There are only few me				
	•		l as with halogen in Periodi	c Table	
	d) Non-metals are more t		i as with halogen in i crioti	c rabic.	
55.		ng has the lowest ionisation	anaray?		
55.	a) $1s^2 2s^2 2p^6$	b) $1s^2 2s^2 2p^6 3s^1$	c) $1s^2 2s^2 2p^5$	d) $1s^2 2s^2 2p^3$	
56.		correct order of first ionisa		u) 13 23 2p	
50.	a) $K > Na > Li$	b) Be > Mg > Ca	c) B > C > N	d) Ge > Si > C	
57	•	, ,	e group of elements in the l		
57.	a) Aluminium	b) Chromium	c) Argon	d) Lanthanum	
EO		•	, ,	•	
56.			apping of oxygen orbitals vc) Three p-orbitals		
Ε0	a) sp^3 -hybridized	b) sp^2 -hybridized	•	d) None of these	
59.			a bonding orbitals used by		
60	a) Pure <i>p</i>	b) <i>sp</i> -hybrid	c) sp^2 -hybrid	d) sp^3 -hybrid	
60.	1, 3-butadiene has:	1.) 2 12 - 1 1-	.) 0 12 - 1 1-	1) (12 - 1 1-	
<i>c</i> 1	a) 6σ and 2π -bonds	b) 2σ and 2π -bonds	c) 9σ and 2π -bonds	d) 6σ and 2π -bonds	
61.		ansitions involves maximum		1) 142+() 143+()	
	a) $M^-(g) \to M(g)$	b) $M(g) \rightarrow M^+(g)$	c) $M^+(g) \to M^{2+}(g)$	d) $M^{2+}(g) \to M^{3+}(g)$	
62.		olecular species has unpair		12.02-	
	a) N ₂	b) F ₂	c) 0 ₂	d) 0_2^{2-}	
63.	_	st ionisation energy among			
	a) $1s^2$, $2s^22p^3$	b) $1s^2$, $2s^22p^6$, $3s^1$	c) $1s^2$, $2s^22p^6$	d) $1s^2$, $2s^22p^5$	
64.	Which of the following ha		> xx +	D a 4	
	a) Li ⁺	b) K ⁺	c) Na ⁺	d) Cs ⁺	
65.	Which will not conduct el				
	a) Aqueous KOH solution				

				Gplus Education	
	b) Fused NaCl				
	c) Graphite				
	d) KCl in solid state				
66.	The bond order is maxim	num in:			
	a) H ₂	b) H ₂ ⁺	c) He ₂	d) He ₂ ⁺	
67.	The isoelectronic specie	es among the following are:			
	$I - CH_3^+; II - NH_2^+; III -$	NH_4^+ ; $IV - NH_3$			
	a) I, II, III	b) II, III, IV	c) I, II, IV	d) II, I	
68.	The screening effect of a	<i>l</i> -electros is	•	-	
	a) Equal to that of <i>p</i> -ele		b) More than that of p -el	ectrons	
	c) Same as <i>f</i> -electrons		d) Less than <i>p</i> -electrons		
69.	OF ₂ is:				
	a) Linear molecule and	sp-hybridized			
	b) Tetrahedral molecule				
	c) Bent molecule and sp				
	d) None of the above	,			
70.	*	nal relationship. Which of th	he following statement abou	it them is/are not true?	
	I. Both react with HCl			,	
	II. They are made pass	-			
	-	n acetylene on treatment w	ith water		
	IV. Their oxides are am	•			
	a) (iii) and (iv)	b) (i) and (iii)	c) (i) only	d) (iii) only	
71.	Which is not linear?	2) (1) uniu (111)	o) (i) siii)	, ()	
,	a) CO ₂	b) HCN	c) C ₂ H ₂	d) H ₂ O	
72.		g bond angle is maximum?		u) 1120	
,	a) NH ₃	b) NH ₄ ⁺	c) PCl ₅	d) SCl ₂	
73.	The molecule which has		c) i dis	u) 501 ₂	
, 5.	a) PCl ₃	b) SO ₃	c) CO ₃ ²⁻	d) NO ₃	
74.	, .	has no $'d'$ electrons in the α		uj Nog	
7 - 1.	a) [MnO ₄] ⁻	b) $[Co(NH_3)_6]^{3+}$	c) [Fe(CN) ₆] ³⁻	d) $[Cr(H_2O)_6]^{3+}$	
75			in the value of electronegati	, - , - ,	
75.	a) Equal to or less than		in the value of electronegati	vities should be.	
	b) More than 1.7	1./			
	c) 1.7 or more				
	d) None of the above				
76	Strongest bond is in:				
70.	a) NaCl	b) CsCl	c) Both (a) and (b)	d) None of these	
77	-	•		=	
//.	The formation of the oxide ion $O^{2-}(g)$ requires first an exothermic and then an endothermic step as shown below				
	below, $O(g) + e \rightarrow O^{-}(g); \Delta H = -142 \text{ kJ/mol}$				
	$0^{-}(g) + e \rightarrow 0^{2-}(g); \Delta B$				
	These is because:	11 – 044 KJ/IIIOI			
		vely larger size than oxyge	un atom		
	b) Oxygen has high elec		in atom		
		sist the addition of another	oloctron		
	d) Oxygen is more electrical		Ciccuon		
7Ω		ronegative ving has the largest dipole r	moment?		
<i>,</i> 0.	a) NH ₃	b) H ₂ 0	c) HI	d) SO ₃	
70	The correct order of rad	· -	c) III	uj 503	
17.	a) $N < Be < B$		c) $Fe^{3+} < Fe^{2+} < Fe^{4+}$	d) Na $< Li < K$	
	$u_1 u_1 \setminus D \in \mathcal{D}$			$a_1 ma \sim b \iota \sim n$	

80.	Diagonal relationship is for			
	a) Li-Na b) Be-Mg	c) Si-C	d) B-Si	
81.	Bond order of 1.5 is shown by:	-	-	
	a) 0_2^{2-} b) 0_2	c) 0 ₂ ⁺	d) 0 ₂	
82.	Which one of the following is an amphoteric oxid-	, <u>-</u>	2	
	a) ZnO b) Na ₂ O	c) SO ₂	d) B ₂ O ₃	
83.	Among, Al ₂ O ₃ , SiO ₂ , P ₂ O ₃ and SO ₂ the correct orde		, 2 3	
	a) $SO_2 < P_2O_3 < SiO_2 < Al_2O_3$	b) $SiO_2 < SO_2 < Al_2O_3$	$< P_2 O_2$	
	c) $Al_2O_3 < SiO_2 < SO_2 < P_2O_3$	d) $Al_2O_3 < SiO_2 < P_2O_3$		
84	Point out the wrong statement. On moving horizon	, , , , , , , , , , , , , , , , , , , ,		
0 11	Table	many monniere to right aero	oss a period in the remodie	
	a) Metallic character decreases			
	b) Electronegativity increases			
	c) Gram atomic volume first decreases and then i	ncreases		
	d) Size of the atoms increases for normal element			
85	The correct increasing bond angles order is:			
05.	a) $BF_3 < NF_3 < PF_3 < ClF_3$			
	b) $ClF_3 < PF_3 < NF_3 < BF_3$			
	c) $BF_3 \approx NF_3 < PF_3 < ClF_3$			
	d) $BF_3 < NF_3 < PF_3 > ClF_3$			
86	The incorrect statement among the following is			
001	a) The first ionisation potential of Al is less than t	he first ionisation notential	of Mg	
	b) The second ionisation potential of Mg is greate		_	
	c) The first ionisation potential of Na is less than			
	d) The third ionisation potential of Mg is greater		1 01 146	
87	Concept of bond order in the molecular orbital th		per of electrons in the bonding	
٠	and antibonding orbitals. The bond order:	iooi y depende on one name	ver or orecerous in the containing	
	a) Can have a —ve value b) Has always an integral value			
	b) Has always an integral value	CHITOIA		
	c) Is a non-zero quantity			
	d) Can assume any +ve value, including zero			
88.	Which hybridization results non-polar orbitals?			
	a) sp b) sp^2	c) sp^3	d) dsp^2	
89.	The total number of valency electrons for PO_4^{3-} ic	on is:	, ,	
	a) 32 b) 16	c) 28	d) 30	
90.	Intramolecular hydrogen bonding is found in:	,	,	
	a) Salicyldehyde b) Water	c) Acetaldehyde	d) Phenol	
91.	Amphoteric oxide combinations are in	,	,	
	a) ZnO, K ₂ O, SO ₃ b) ZnO, P ₂ O ₅ , Cl ₂ O ₇	c) SnO ₂ , Al ₂ O ₃ , ZnO	d) PbO_2 , SnO_2 , SO_3	
92.	Chlorine atom tends to acquire the structure of:	2. 2. 3.	<i>J</i> 2. 2. 3	
	a) He b) Ne	c) Ar	d) Kr	
93.	Which of the following ion is the smallest ion?	,	,	
	a) 0 ₂ b) 0 ₂ ⁺	c) $0\frac{1}{2}$	d) 0_2^{2-}	
94.	Variable valency is characteristic of:	, 2	, 2	
	a) Noble gas			
	a) Noble gas b) Alkali metals			
	a) Noble gasb) Alkali metalsc) Transition metals			
95.	a) Noble gas b) Alkali metals			

of

				Gplus Educatio
	b) Ion-ion forces			Opius Luucutt
	c) Ion-dipole forces			
	d) Ion-induced dipole for	rces		
96.	Identify the transition ele			
,	a) $1s^2$, $2s^22p^6$, $3s^23p^6$, 4		b) $1s^2$, $2s^22p^6$, $3s^23p^63a$	$d^2.4s^2$
	c) $1s^2$, $2s^22p^6$, $3s^23p^63a$		d) $1s^2$, $2s^22p^6$, $3s^23p^63a$	· ·
97.		units which occupy lattice	-	· , _F
	a) Atoms	b) Ions	c) Molecules	d) Electrons
98.	Which is not true in case	•	,	,
	a) It is linear bond			
	b) It is 100% ionic			
	c) It is formed between t	wo atoms with large elect	ronegativity difference	
	d) None of the above			
99.	In the following molecul	le, the two carbon atoms	marked by asterisk (*) po	ossess the following type
	hybridized orbitals:			
		H ₂ C — *	==_**—CH ₃	
	a) sp^3 -orbital	b) sp^2 -orbital	c) <i>sp</i> -orbital	d) s-orbital
100	, .	s in both hard and soft for		d) 5 of brear
100.	a) Fe	b) Si	c) C	d) Al
101.	Resonance is not shown l	•	c) d	a) III
202.	a) C ₆ H ₆	b) CO ₂	c) CO ₃ ²⁻	d) SiO ₂
102.	The hybridization of P in	_	5) 553	u) 515 <u>/</u>
	a) I in $ICl_{\overline{4}}$	b) S in SO ₃	c) N in NO ₃	d) S in SO ₄ ²⁻
103.	Dipole moment is highes	,	5) 1 1. 5	u) o m o q
	a) CHCl ₃	b) CH ₄	c) CHF ₃	d) CCl ₄
104.			of following ions? N^{3-} , O^{2-} , 1	, .
	a) $N^{3-} > 0^{2-} > F^- > Ms$	$x^{2+} > Na^+$		
	c) $N^{3-} > 0^{2-} > Mg^{2+} > 0^{2-}$	Na ⁺ > F ⁻	b) $N^{3-} > O^{2-} > F^{-} > Na$ d) $Na^{+} > F^{-} > O^{2-} > Ma$	$g^{2+} > N^{3-}$
105.			ds would you expect maxim	
	centres of cotions and an		, ,	
	a) LiF	b) CsF	c) CsI	d) LiI
106.	. Which of the following ha			,
	a) BeF ₂	b) H ₂ O	c) NH ₃	d) CH ₄
107	The state of hybridization	n of C_2 , C_3 , C_5 and C_6 of the	hydrocarbon,	
	CH ₂ CH	•		
	$CH_3 - {}_{6}C - CH = CH - {}_{5}CH - {}_{3}CH - {}_{3}CH - {}_{5}CH - {}_{$	—С≡СН		
	7 5 4 3	2 1		
	Is in the following secure	100		
	Is in the following sequer	ICC.		

d) sp, sp^2, sp^2 and sp^3 a) sp, sp^2, sp^3 and sp^2 b) sp, sp^3, sp^2 and sp^3 c) sp^3 , sp^2 , sp^2 and sp

108. Among the following elements Ca, Mg, P and Cl the order of increasing atomic radius is:

a) Mg < Ca < Cl < Pb) Cl < P < Mg < Cac) P < Cl < Ca < Mgd) Ca < Mg < P < Cl

109. Alkali metals in each period have:

- a) Largest size
- b) Lowest *IE*
- c) Highest IE
- d) Highest electronegativity
- 110. The critical temperature of water is higher than that of $\mathbf{0}_2$ because $\mathbf{H}_2\mathbf{0}$ molecules has:
 - a) Fewer electrons than O_2
 - b) Two covalent bonds

c) V-shape		•
d) Dipole moment		
111. For diatomic species are listed below. Identify the	correct order in which the	bond order is increasing in
them:		
a) $NO < O_2^- < C_2^{2-} < He_2^+$		
b) $O_2^- < NO < C_2^{2-} < He_2^+$		
c) $C_2^{2-} < He_2^+ < O_2^- < NO$		
d) $He_2^+ < O_2^- < NO < C_2^{2-}$		
112. Which of the following is least ionic?		
a) CaF ₂ b) CaBr ₂	c) CaI ₂	d) CaCl ₂
113. The bond order of individual carbon-carbon bonds i	n benzene is:	
a) One		
b) Two		
c) Between 1 and 2		
d) One and two alternately		
114. The total number of valency electrons in PH_4^+ ion is:		
a) 8 b) 9	c) 6	d) 14
115. Pauling's equation for determining the electronegat	ivity of an element, is	
X_A, X_B =electronegativity values of elements A and A	В	
Δ =represents polarity of $A - B$ bond		
a) $X_A - X_B = 0.208\sqrt{\Delta}$ b) $X_A + X_B = 0.208\sqrt{\Delta}$	c) $X_A - X_B = 0.208\Delta^2$	d) $X_A - X_B = \sqrt{\Delta}$
116. The set representing the correct order of ionic radiu		i n b
a) $Na^+ > Li^+ > Mg^{2+} > Be^{2+}$	>	
b) $Li^+ > Na^+ > Mg^{2+} > Be^{2+}$		
c) $Mg^{2+} > Be^{2+} > Li^{+} > Na^{+}$		
d) $Li^+ > Be^{2+} > Na^+ > Mg^{2+}$		
117. The pair having similar geometry is :		
a) BF ₃ , NH ₃ b) BF ₃ , AlF ₃	c) BeF ₂ , H ₂ O	d) BCl ₃ , PCl ₃
118. The attraction that non-polar molecules have for each		, ,
a) Hydrogen bonding	1 ,	v
b) Difference in electronegativities		
c) High ionisation energy		
d) Van der Waals' forces		
119. The structure of ICl_2^- is:		
a) Trigonal		
b) Octahedral		
c) Square planar		
d) Distorted trigonal bipyramid		
120. The correct order of increasing oxidising power is		
a) $F_2 < Cl_2 < I_2 > Br_2$ b) $F_2 < Br_2 < Cl_2 < I_2$	c) $Cl_2 < Br_2 < F_2 < I_2$	d) $I_2 < Br_2 < Cl_2 < F_2$
121. Which of the following oxides is not expected to reac	ct with sodium hydroxide?	
a) BeO b) B ₂ O ₃	c) CaO	d) SiO ₂
122. In which molecule, the central atom does not use <i>sp</i>	³ -hybrid orbitals in its bon	ding?
a) NH ₂ b) BeF ₃	c) SO ₂ Cl ₂	d) SO ₄ ²⁻
123. Which element has the lowest electronegativity?		
a) Li b) F	c) Cl	d) Fe
124. Amongst the following elements the configuration h	aving the highest ionization	n energy is:
a) [Ne]3s ² 3 p^1 b) [Ne]3s ² 3 p^3	c) [Ne] $3s^23 p^2$	d) [Ar] $3d^{10}4s^24p^3$
125. Which species does not exist?		-
a) $(SnCl_6)^{2-}$ b) $(GeCl_6)^{2-}$	c) (CCl ₆) ²⁻	d) (SiCl ₆) ²⁻

126. Which one of the following has not triangular pyran	nidal shape?	•
a) NH ₃ b) NCl ₃	c) PF ₃	d) BCl ₃
127. Among NH ₃ , BeCl ₂ , CO ₂ and H ₂ O, the non-linear mo	lecules are:	
a) BeCl ₂ and H ₂ O b) BeCl ₂ and CO ₂	c) NH ₃ and H ₂ O	d) NH ₃ and CO ₂
128. When the hybridization state of carbon atom chang		
the hybridized orbitals:		
a) Decreases gradually		
b) Decreases considerably		
c) Is not affected		
d) Increases progressively		
129. Which is distilled first?		
a) Liquid H ₂ b) Liquid CO ₂	c) Liquid O ₂	d) Liquid N ₂
130. The equilateral triangle shape has:	of Elquid oz	a) Eiquiu 112
a) sp -hybridization b) sp^2 -hybridization	c) sp^3 -hybridization	d) sp^3d -hybridization
131. Which atomic orbital is always involved in sigma be		a) sp a hybridization
a) s b) p	c) d	d) <i>f</i>
132. Two ice cubes are pressed over each other and u	•	
holding them together?	inite to form one cube. V	vilicii force is responsible for
a) van der Waals' forces		
-		
b) Covalent attraction		
c) Hydrogen bond formation		
d) Dipole-dipole attraction)(0) to Chil (1010) down	15 -6+b
133. The decreasing values of bond angles from $NH_3(10)$	16°) to SbH ₃ (101°) down	group-15 of the periodic table
is due to:		
a) Increasing $bp - bp$ repulsion		
b) Increasing p -orbital character in sp^3		
c) Decreasing $lp - bp$ repulsion	0.000.000.00	
d) Decreasing electronegativity	CATION	
134. The bond that determines the secondary structure		
a) Coordinate bond b) Covalent bond	c) Hydrogen bond	d) Ionic bond
135. Which is not an exception to octet rule?		
a) BF ₃ b) SnCl ₄	c) BeI ₂	d) ClO ₂
136. Higher is the bond order, greater is:		
a) Bond dissociation energy		
b) Covalent character		
c) Bond length		
d) Paramagnetism		
137. Highest electron affinity among the following is		
a) Fluorine b) Chlorine	c) Sulphur	d) Xenon
138. According to molecular orbital theory for O_2^+ :		
a) Bond order is less than O_2 and O_2^+ is paramagnet	tic	
b) Bond order is more than O_2 and O_2^+ is paramagne	etic	
c) Bond order is less than O_2 and O_2^+ is diamagnetic		
d) Bond order is more than O_2 and O_2^+ is diamagnet	tic	
139. Which of the following has fractional bond order?		
a) 0_2^{2+} b) 0_2^{2-}	c) F_2^{2-}	d) H ₂
140. Which of the following is not isostructural with SiCl	· -	, <u>-</u>
a) PO ₄ ³⁻ b) NH ₄ ⁺	c) SCl ₄	d) SO ₄ ² -
141. The correct order of decreasing second ionisation e	*	- •
a) $V > Mn > Cr > Ti$ b) $Mn > Cr > Ti > V$		

			Gplus Education
142. The electrons used in b	onding atoms:		
a) Belong to outermost	shell		
b) Belong to penultima	te shell		
c) Belong to outermost	shell and sometimes penu	ltimate shell	
d) Belong to penultima	te shell and sometimes to o	outermost shell	
143. The discovery of which	of the following group of e	elements gave death blow to	the Newland's law of
octaves?			
a) Inert gases	b) Alkaline earths	c) Rare earths	d) Actinides
144. Generally, the first ioni	sation energy increases alo	ong a period. But there are so	ome exceptions. One which is
not an exception is	<u>.</u>		-
a) N and O	b) Na and Mg	c) Mg and Al	d) Be and B
	•		sing basic nature of the given
oxides?	·	•	
a) $Al_2O_3 < MgO < Na_3$	$_{2}0 < K_{2}0$	b) $MgO < K_2O < Al_2O_3$	< Na ₂ 0
c) $Na_2O < K_2O < MgC$		d) $K_2O < Na_2O < Al_2O_3$	-
146. The basis of keeping th		,	
a) Ionisation potential	8 1	b) Electronegativity	
c) Electron affinity		d) Number of valence ele	ectrons
147. I st and II nd IE of Mg are	- 7 646 and 15 035 eV resn	-	
atoms of magnesium in	to Mg ²⁺ ions present in 12	mg of magnesium vapours i	is [Given $1eV = 96.5 \text{ kJ}$
mol ⁻¹]	ito ing Tons present in 12	ing of magnesium vapours	is [diven, fev yolo k]
a) 1.5	b) 2.0	c) 1.1	d) 0.5
148. K^+ , Cl^- , Ca^{2+} , S^{2-} ions a			-
a) $S^{2-} > Cl^{-} > K^{+} > C$		easing order of their size is.	
b) $Ca^{2+} > K^+ > Cl^- >$			
c) $K^+ > Cl^- > Ca^{2+} >$			
d) $Cl^{-} > S^{2-} > Ca^{2+} >$			
,	AF	. 101 570 072 150	621 1 m 1 1 6
149. The first four ionisation		ent are 191, 578, 872 and 59	62 Real. The number of
valence electrons in the			15.4
a) 1	b) 2	c) 3	d) 4
150. Which are true stateme	9		
(1) PH ₅ and BiCl ₅ does			
(2) $p \pi - d\pi$ bonds are	-		
(3) Electrons travel with			
(4) SeF ₄ and CH ₄ has s			
(5) I_3^+ has bent geomet		2.4.0 =	2.4.0.4
a) 1,3	b) 1, 2, 5	c) 1,3,5	d) 1, 2, 4
151. Correct increasing order	-		
a) Na $< Mg > Al < Si$	b) Na $< Mg < Al < Si$	c) Na $> Mg > Al > Si$	d) Na $< Mg < Al > Si$
152. Which pair represents			
a) CH_3^- and CH_3^+	b) NH ₄ and NH ₃	c) SO_4^{2-} and BF_4^-	d) NH ₂ and BeF ₂
153. The first ionisation pot		:	
a) 8.29 eV, 8.29 eV	b) 8.29 eV, 9.32 eV	c) 9.32 eV, 9.32 eV	d) 9.32 eV, 8.29 eV
154. The correct order accord	9		_
a) $0 > 0^- > 0^{2-}$	b) $0^- > 0^{2-} > 0$	c) $0^{2-} > 0^{-} > 0$	d) $0 > 0^{2-} > 0^{-}$
155. The correct order of ele			
a) $B < C < 0 > N$	b) $B > C > N > O$	c) $0 > C > B > N$	d) $0 < C < B < N$
156. Which of the following			
•	ctronegative than chlorine	b) Nitrogen has greater	
c) Lithium is amphoter	ic	d) Chlorine is an oxidisir	ng agent

		Opius Luucuti
157. Solid NaCl is a bad conductor of electricity because:		
a) In solid NaCl there are no ions		
b) Solid NaCl is covalent		
c) In solid NaCl there is no velocity of ions		
d) In solid NaCl there are no electrons		
158. Which of the following configuration is associated w		
	c) $1s^2$, $2s^22p^6$, $3s^2$	-
159. Consider the ions K^+ , S^{2-} , Cl^- and Ca^{2+} . The radii of	-	
a) $Ca^{2+} > K^+ > Cl^- > S^{2-}$	b) $Cl^- > S^{2-} > K^+ > Ca^2$	
c) $Ca^{2+} > Cl^- > K > S^{2-}$	d) $S^{2-} > Cl^{-} > K^{+} > Ca^{2}$	
160. The correct order of ionisation energy for comparin		=
a) $C < N > 0$ b) $C > N < 0$	c) $C > N > 0$	d) $C < N < 0$
161. A π -bond is formed by sideways overlapping of:		
a) <i>s-s</i> orbitals b) <i>p-p</i> orbitals	c) <i>s-p</i> orbitals	d) <i>s-p-s</i> orbitas
162. Which oxide of nitrogen is isoelectronic with CO ₂ ?		
a) NO ₂ b) N ₂ O	c) NO	d) N_2O_2
163. In which of the following pairs of molecules/ions, th		
a) NO_2 and NH_3 b) BF_3 and NO_2^-	c) NH_2^- and H_2O	d) BF ₃ and NH ₂
164. Which of the following has largest ionic radius?		
a) Cs ⁺ b) Li ⁺	c) Na ⁺	d) K ⁺
165. Boron cannot form which one of the following anior		
a) BF ₆ ³⁻ b) BH ₄ ⁻	c) $B(OH)_{4}^{-}$	d) BO ₂
166. Most covalent halide of aluminium is:	>	
a) AlCl ₃ b) AlI ₃	c) AlBr ₃	d) AlF ₃
167. The shape of ClO ₃ according to VSEPR model is:		
a) Planar triangle b) Pyramidal	c) Tetrahedral	d) Square planar
168. The correct order of increasing bond angles in the fo		
a) $NO_2^- < NO_2 < NO_2^+$ b) $NO_2^+ < NO_2 < NO_2^-$		
169. Which of the following pairs has both members from		
a) Mg – Ba b) Mg – Cu	c) Mg – K	d) Mg – Na
170. Silicon has 4 electrons in the outermost orbit. In for	-	
a) It gains electrons b) It losses electrons	c) It shares electrons	d) None of these
171. sp^2 -hybridization is shown by:		
a) BeCl ₂ b) BF ₃	c) NH ₃	d) XeF ₂
172. A <i>p</i> -block element in which last electron enters into		=
a) As b) Ga	c) No such element exist	d) He
173. Which of the following are not correct?		
a) Lone pair of electrons present on central atom ca	n give rise to dipole momer	nt
b) Dipole moment is vector quantity		
c) CO ₂ molecule has dipole moment		
d) Difference in electronegativities of combining ato	-	ent
174. The order of first ionisation energies of the element		
	c) Na > $Li > B > Be$	d) Be $> Li > B > Na$
175. Differentiating electron in inner transition elements		
a) s b) p	c) <i>d</i>	d) <i>f</i>
176. Which is expected to conduct electricity?		
a) Diamond b) Molten sulphur	c) Molten KCl	d) Crystalline NaCl
177. Elements whose electronegativities are 1.2 and 3.0,		
a) Ionic bond b) Covalent bond	c) Coordinate bond	d) Metallic bond
178. Which is the correct order of ionic sizes?) At. no.: Co	e = 58, $Sn = 50$, $Yb = 70$ ar	nd Lu = 71)

				Opius Luucution	
	•	b) Sn > Yb > Ce > Lu	•	d) Lu > Yb > Sn > Ce	
179.	79. Oxygen is divalent, but sulphur exhibits variable valency of 2, 4 and 6, because:				
	a) Sulphur is less electron	egative than oxygen			
	b) Sulphur is bigger atom	than oxygen			
	c) Ionisation potential of s	sulphur is more than oxyge	n		
	d) Of the presence of <i>d</i> -or	bitals in sulphur			
180.	In the Periodic Table, goin	ng down in the fluorine gro	цр		
	a) Stability of hydrides wi	ll increases	b) Ionic radii will increase	es .	
	c) Electronegativity will in	ncreases	d) IE will increases		
181.	The ionisation energy of n	itrogen is larger than that o	of oxygen because of		
	a) Of greater attraction of	electrons by the nucleus			
	b) Of the size of nitrogen a	atom being smaller			
	c) The half-filled <i>p</i> -orbital	ls possess extra stability			
	d) Of greater penetration	effect			
182.	Which has the highest ion	isation potential?			
	a) Na	b) Mg	c) C	d) F	
183.	Which of the following do	es not represents the corre	ct order of the property inc	dicated?	
	a) $Sc^{3+} > Cr^{3+} > Fe^{3+} >$	Mn ³⁺ –ionic radii	b) $Sc < Ti < Cr < Mn - c$	lensity	
	c) $Mn^{2+} > Ni^{2+} > Co^{2+} <$	< Fe ²⁺ — ionic radii	d) $FeO < CaO < MnO < O$	CuO — basic nature	
184.	The electronic configurati	on of most electronegative	elements is		
	a) $1s^2$, $2s^2$, $2p^5$	_	c) $1s^2$, $2s^2$, $2p^6$, $3s^1$, $3p^1$	d) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^5$	
185.		lic Table does not contain c			
	a) IB	b) IA	c) IIA	d) IIIA	
186.	The species showing $p\pi$ –	The state of		,	
	a) NO_3^-	b) PO ₄ ³⁻	c) CO_3^{2-}	d) NO ₂	
187.	, ,	nd degenerated orbital sho	- 0	, 2	
	a) s-block elements	b) p-block elements	c) <i>d</i> -block elements	d) All of these	
188.	Which of the following is a		ATION	,	
	a) Sb	b) Mg	c) Zn	d) Bi	
189.		ybrid orbitals in its bondin	,	,	
	a) BeF ₃	b) OH ₃ ⁺	c) NH ₄ ⁺	d) NF ₃	
190.		ve highest electron affinity?		., 3	
	a) N	b) 0	c) F	d) Cl	
191.		asing electropositive chara		,	
	a) Cu ≈ Fe < Mg	b) Fe < Cu < Mg	c) Fe < Mg < Cu	d) Cu < Fe < Mg	
192.		en row in the Periodic Table	=		
	a) Increases from left to r		b) Decreases from left to r	right	
	c) First increases, then de	-	d) Remains the same	Ö	
193.	The lightest metal is		,		
	a) Li	b) Na	c) Mg	d) Ca	
194.	Which is the property of n		-)8	,	
	a) Electronegative		b) Basic nature of oxide		
	c) Reducing property		d) Low ionisation potentia	al	
195.	In a given shell the order	of screening effect is	a, zom romousion posensi	••	
	a) $s > p > d > f$	_	c) $f > d > p > s$	d) s	
196		pounds the one that is pola			
	a) H_2CO_3	b) SiF ₄	c) BF ₃	d) HClO ₂	
197				endothermic step as shown	
	haların	(a) - 5 q 55 m oc c			

 $O(g) + e^{-} = O^{-}(g); \Delta H^{\circ} = -142 \text{ kJmo} 1^{-1}$

			Gplus Education
$0(g)^{-} + e^{-} = 0^{2-}(g)$	g); $\Delta H^{\circ} = 844 \text{ kJmo} 1^{-1}$		
This is because			
a) Oxygen is more e	lectronegative		
b) Oxygen has high	electron affinity		
c) O ⁻ ion will tend to	o resist the addition of anoth	er electron	
d) O ⁻ has comparati	vely larger size than oxygen	atom	
	ing statements is correct?		
a) X^- ion is larger in	n size than <i>X-</i> atom	b) X^+ ion is larger in s	size than X-atom
c) X^+ ion is larger in	n size than X^- ion	d) X^+ and X^- ions are	e equal in size
199. Number of elements	s presents in the fifth period	of periodic table is	
a) 32	b) 10	c) 18	d) 8
200. The compound poss	sessing most strongly ionic n	ature is:	-
a) SrCl ₂	b) BaCl ₂	c) CaCl ₂	d) CsCl
201. What is the name of	element with atomic number	er 105?	-
a) Kurchatovium	b) Dubnium	c) Nobelium	d) Holmium
202. Among the followin	g which is the strongest oxid	ising agent?	-
a) Cl ₂	b) F ₂	c) Br ₂	d) I ₂
203. The outermost elect	ronic configuration of the m	ost electronegative elemen	
a) ns^2np^3	b) ns^2np^4	c) ns^2np^5	d) ns^2np^6
•	nents regarding bonding mo	lecular orbitals because:	
	ar orbital possess less energ		bitals.
·	ar orbitals have low electron	=	
	bonding molecular orbitals		
	when the lobes of the combi		
205. Which of the follow		j.	
a) Al	b) Al ⁺	c) Al ²⁺	d) Al ³⁺
206. Carbon atoms in C ₂ ((CN) ₄ are:		
_	b) sp^2 -hybridized	c) sp -and sp^2 - hybrid	sp, sp^2 and sp^3 -
a) <i>sp-</i> hybridized	b) sp -nybriaized	c) sp -and sp - hybrid	$(1) \frac{sp, sp^2}{hybridized}$ and $\frac{sp^3}{hybridized}$
207. The common featur	e among the species CN^- , CO	and NO ⁺ are:	
a) Bond order three	and isoelectronic		
b) Bond order three	and weak filed ligands		
c) Bond order two a	and π -acceptors		
d) Isoelectronic and	weak filed ligands		
208. Which one of the ele	ements has the maximum ele	ectron affinity?	
a) F	b) Cl	c) Br	d) I
209. The internuclear dis	stance in H ₂ and Cl ₂ molecul	es are 74 and 198 pm respe	ectively. The bond length of H —
Cl may be:			
a) 272 pm	b) 70 pm	c) 136 pm	d) 248 pm
210. PCl ₅ exists but NCl ₅	does not because:		
a) Nitrogen has no v	vacant $2d$ -orbitals		
b) NCl ₅ is unstable			
c) Nitrogen atom is	much smaller than p		
d) Nitrogen is highly	y highly inert		
211. Which one of the fol	lowing process requiring ab	sorption of energy?	
a) Cl \rightarrow Cl ⁻	b) H \rightarrow H ⁻	c) $0 \to 0^{2-}$	d) $F \rightarrow F^-$
212. The hybridization o	f carbon in diamond, graphit	e and acetylene is:	
a) sp^3 , sp^2 , sp	b) sp^3 , sp , sp^2	c) sp^2 , sp^3 , sp	d) sp , sp^3sp^2
213. Which ionisation po	tential (IP) in the following	equations involves the grea	test amount of energy?
a) $K^+ \to K^{2+} + e^-$	b) Na \rightarrow Na ⁺ + e^-	c) $C^{2+} \rightarrow C^{3+} + e^{-}$	d) $Ca^+ \rightarrow Ca^{2+} + e^-$

		opius zuudutioii
214. The pairs of bases in DNA are held together by:		
a) Hydrogen bonds b) Ionic bonds	c) Phosphate groups	d) Deoxyribose groups
215. The energy of $\sigma 2s$ -orbital is greater than $\sigma^* 1s$ orbital $\sigma^* 1$	al because:	
a) $\sigma 2s$ orbital is bigger than $\sigma 1s$ orbital		
b) $\sigma 2s$ orbital is a bonding orbital whereas, $\sigma^* 1s$ an	-	
c) $\sigma 2s$ orbital has a greater value of n than $\sigma^* 1s$ orb	ital	
d) None of the above		
216. Who developed the long form of Periodic Table?		
a) Niels Bohr b) Moseley	c) Mendeleef	d) Lothar Meyer
217. At ordinary temperature and pressure, among ha	logens, the chlorine is a g	as, bromine is a liquid and
iodine is a solid. This is because:		
a) The specific heat is in the order $Cl_2 > Br_2 > I_2$.1 1 . 1.1	
b) Intermolecular forces among molecules of chloring	ne are the weakest and thos	se in iodine are the
strongest		
c) The order of density is $I_2 > Br_2 > Cl_2$		
d) The order of stability is $Cl_2 > Br_2 > I_2$		
218. The radii F , F^- , O and O^{2-} are in the order of	2 2 7 7 7	27
	c) $0^{2-} > F^- > 0 > F$	d) $F > 0 > F^- > 0^{2^-}$
219. Which of the following is the smallest in size?	2 02-	D 322-
a) Na ⁺ b) F ⁻	c) 0 ²⁻	d) N ³⁻
220. Which of the following pairs show reverse properties	es on moving along a perioc	l from left to right and from
top to down in a group?		200
a) Nuclear charge and electron affinity	b) Ionisation energy and	electron affinity
c) Atomic radius and electron affinity	d) None of the above	
221. Which of the following relation is correct?	1 2 - ot	
a) I^{st} IE of C > I^{st} IE of B	b) I^{st} IE of $C < I^{st}$ IE of B	
c) II nd IE of C > II nd IE of B	d) Both (b) and (c)	
222. KF combines with HF to form KHF ₂ . The compound		n farranii
	c) K ⁺ and [HF ₂] ⁻	d) [KHF] ⁺ and F ⁻
223. The bond angle between $H - O - H$ in ice is closest		
a) 115° b) 109°28′	c) 110°	d) 90°
224. Which has higher bond energy and stronger bond?	. –	
a) F ₂ b) Cl ₂	c) Br ₂	d) I ₂
225. The example of the p - p -orbital overlapping is the fo	rmation of:	
a) H ₂ molecule		
b) Cl ₂ molecule		
c) Hydrogen chloride		
d) Hydrogen bromide molecule	anal X :	
226. In compound <i>X</i> , all the bond angles are exactly 109°		D 01.1 C
a) Chloromethane b) Iodoform	c) Carbon tetrachloride	d) Chloroform
227. Which of the following species has four lone pairs of		
a) I b) 0 ⁻	c) Cl ⁻	d) He
228. The type of bond formed between H ⁺ and NH ₃ in NI		D.H. Janes
a) Ionic b) Covalent	c) Dative	d) Hydrogen
229. Which transition involves maximum amount of energy $M^{-}(x) = M(x) + x$	rgy?	
a) $M^-(g) \rightarrow M(g) + e$ b) $M^-(g) \rightarrow M^+(g) + 2e$		
b) $M^{-}(g) \to M^{+}(g) + 2e$		
c) $M^+(g) \to M^{2+}(g) + e$		
d) $M^{2+}(g) \to M^{3+}(g) + e$		
230. The order of stability of metal oxides is		

a)
$$Al_2O_3 < MgO < Fe_2O_3 < Cr_2O_3$$

b)
$$Cr_2O_3 < MgO < Al_2O_3 < Fe_2O_3$$

c)
$$Fe_2O_3 < Cr_2O_3 < Al_2O_3 < MgO$$

d)
$$Fe_2O_3 < Al_2O_3 < Cr_2O_3 < MgO$$

231. The first ionisation potential of Na, Mg, Al and Si are in the order

a) Na
$$< Mg > Al < Si$$

b) Na
$$> Mg > Al < Si$$

c) Na
$$< Mg < Al > Si$$
 d) Na $> Mg > Al < Si$

d) Na
$$> Mg > Al < Si$$

232. The electronic configuration of 4 elements *K*, *L*, *M* and *N* are,

$$K = 1s^2, 2s^2 2p^1$$
 $L = 1s^2, 2s^2 2p^6$

$$M = 1s^2, 2s^22p^4$$
 $N = 1s^2, 2s^22p^3$

The element that would form a diatomic molecule with double bond is:

233. In the formation of N_2^+ from N_2 , the electron is lost from:

a) a σ-orbital

c) a
$$\sigma^*$$
-orbital

234. Which of the following two are isostructural?

c)
$$CO_3^{2-}$$
, SO_3^{2-}

235. Which has sp^2 -hybridization?

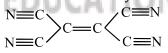
a)
$$CO_2$$

c)
$$N_2O$$

236. Which of the following metal oxides is most basic?

b)
$$Al_2O_3$$

c)
$$As_2O_3$$


237. Which of the following phenomenon will occur when two atoms of same spin will react?

- a) Bonding will not occur
- b) Orbital overlap will not occur
- c) Both (a) and (b)
- d) None of the above

238. The bonds present in N_2O_5 are:

- a) Ionic
- b) Covalent and coordinate
- c) Covalent
- d) Ionic and covalent

239. How many σ -and π -bonds are there in the molecule of tetracyanoethylene?

- a) Nine σ and nine π
- b) Five σ and nine π
- c) Nine σ and seven π
- d) Five σ and eight π

240. The maximum valency of an element with atomic number 7 is

b) 3

d) 5

241. Which of the following compounds has the lowest melting point?

- b) CaCl₂ 242. Nitrogen dioxide cannot be prepared by heating
- c) CaBr₂
- d) Cal₂

b) $Pb(NO_3)_2$ a) KNO₃

- c) $Cu(NO_3)_2$
- d) AgNO₃

243. Which of the following is correct order of increasing size?

- a) $Br^- > S^{2-} > Cl^- > Na^+ > Mg^{2+} > Be^{2+}$
- b) $Be^{2+} > Mg^{2+} > Na^+ > S^{2-} > Cl^- > Br^-$
- c) $S^{2-} > Cl^{-} > Br^{-} > Na^{+} > Mg^{2+} > Be^{2+}$
- d) $Na^+ > Mg^{2+} > Be^{2+} > Br^- > Cl^- > S^{2-}$

244. The correct order of bond angles is:

- a) $PF_3 < PCl_3 < PBr_3 < PI_3$
- b) $PF_3 < PBr_3 < PCl_3 < PI_3$
- c) $PI_3 < PBr_3 < PCl_3 < PF_3$
- d) $PF_3 > PCl_3 < PBr_3 < PI_3$

245. Among the following metals interatomic forces are probably weakest in:

b) Ag

d) Hg

246. The element with atomic number 117 if discovered would be placed in

- a) Noble gas family
- b) Alkali family
- c) Alkaline earth family
- d) Halogen family

247. The element with ato	mic numbers 9, 17, 35, 53, 85	s are all	
a) Noble gases	b) Halogens	c) Heavy metals	d) Light metals
248. Acetic acid exists as d	imer in benzene due to:		
a) Condensation reac	tion		
b) Hydrogen bonding			
c) Presence of carbox	yl group		
d) Presence of hydrog	gen atom at α-carbon		
249. In which of the follow	ring arrangements the order	is not correct according to p	property indicated against it?
a) Increasing size : Al	$^{3+} < Mg^{2+} < Na^+ < F^-$		
b) Increasing $IE_1 : B$	< C < N < O		
c) Increasing EA_1 : I			
d) Increasing metallic	radius: Li $<$ Na $<$ K $<$ Rb		
, ,	the crystals of naphthalene a	re:	
	ces b) Electrostatic forces	c) Hydrogen bonding	d) None of these
251. Which has zero dipole	•	, , ,	,
a) ClF	b) PCl ₃	c) SiF ₄	d) CFCl ₃
•	eriodic Table contains coinag		,3
a) IIA	b) IB	c) IA	d) None of these
	ybridization in ether (CH ₃ OC	,	a) None of these
a) $106^{\circ} 51', sp^3$	b) 104° 31′, sp ³	c) 110°, sp ³	d) None of these
	-		potential values of $'f'$ block
elements are:	ratides of a block elements	as compared to formsation	potential values of j block
a) Higher	b) Lower	c) Equal	d) Either of these
, ,	ectron pairs are present in IF		d) Littler of these
a) 6	b) 7	c) 5	d) 8
256. Formation of π -bond:		c) 5	u) u
a) Increases bond len			
b) Decreases bond len		CATION	
c) Distorts the geome	try of molecule	CATION	
_	c molecules more reactive		
-	nic number 20 will be placed	in which paried of the Parie	odic Table?
		_	
a) 1	b) 2	c) 3	d) 4
a) 90°	rults in the minimum dipole n b) 120°	c) 150°	d) 180°
,	,	,	,
•	moment, but boron trifluorid	e (Br ₃) has zero dipole mol	ment, because:
a) B is less electroneg			
b) F is more electrone	_		
c) BF ₃ is pyramidal w			
	while BF ₃ is trigonal planar		
260. The geometry of PF_5) m	15
a) Planar	b) Square planar	c) Trigonal bipyramidal	=
	onisation energy for compari		_
a) $C > N > 0$	b) $C > N < O$	c) $C < N > 0$	d) C < N < O
	ing arrangements the order	is not according to the prop	erty indicated against it?
_	increasing metallic radius		
-	creasing electron gain enthal	• •	
	reasing first ionisation entha	lphy	
	⁺ < F ⁻ increasing ionic size		
263. Pauling received Nob	el Prize for his work on:		
a) Photosynthesis	b) Atomic structure	c) Chemical bonding	d) Thermodynamics

264. For electron affinity of h	=	=	D.D. 4 GI
a) $F > Cl$	b) F < <i>I</i>	c) Br $> F$	d) Br < <i>Cl</i>
265. The correct electronega	=	a) C: D C N	J) D C: M C
a) C, N, Si, P	b) N, Si, C, P	c) Si, P, C, N	d) P, Si, N, C
266. Which of the following p in the Periodic Table?	properties snow gradual dec	crease with increase in ator	me number across a period
a) Electron affinity	b) Ionisation potential	c) Electronegativity	d) Size of atom
267. Difference between S ar		c) Liectronegativity	uj size oi atom
a) Larger radii and large		b) Smaller radii and large	er size
c) Larger radii and sma		d) Smaller radii and sma	
268. Two lone pairs of electr		•	ner size
a) NH ₃	b) BF ₃	c) CO ₃ ²⁻	d) NH ₂
269. The lattice energy order		c) do3	a) miz
a) LiF > LiCl > LiBr > 1			
b) LiCl > LiF > LiBr > 1			
c) LiBr > LiCl > LiF > 1			
d) LiI > LiBr > LiCl > I			
270. The number of σ and π -		re respectively:	
a) 3, 10	b) 9, 4	c) 4,9	d) 10, 3
271. The correct increasing of			
a) $Ca^{2+} < Mg^{2+} < Be^{2+}$	< K ⁺		
b) $Mg^{2+} < Be^{2+} < K^+ <$	< Ca ²⁺		
c) $Be^{2+} < K^+ < Ca^{2+} <$	Mg^{2+}	>	
d) $K^+ < Ca^{2+} < Mg^{2+} <$	< Be ²⁺		
272. Increase in atomic size	down the group is due to		
a) Increase in number o	f electrons		
b) Increase in number o	f protons and neutrons		
c) Increase in number o		CATION	
-	f protons, neutrons and ele		
273. When the first ionisatio			
a) Alkali metals	b) Halogens	c) Transition metals	d) Rare gases
274. Which of the following i			
a) B	b) Be	c) Mg	d) Al
275. Structure of ICl_2^- is:			
a) Trigonal			
b) Octahedral			
c) Square planar			
d) Distorted trigonal py		1 - 1 10	
276. Which compound does		-	d) HCM
a) C ₂ H ₄	b) H ₂ 0	c) N ₂	d) HCN
277. The correct order of inc a) $F_2 < Cl_2 < Br_2 < I_2$	reasing oxidising power is	b) $I_2 < F_2 < Cl_2 < Br_2$	
c) $Br_2 < Cl_2 < Bl_2 < l_2$		d) $I_2 < Br_2 < CI_2 < BI_2$ d) $I_2 < Br_2 < CI_2 < F_2$	
278. Which is soluble in water	ar?	$u_1 u_2 < Du_2 < u_1 u_2 < u_2$	
a) AgF	b) AgCl	c) AgBr	d) AgI
279. Highest energy will be a	, ,		ujrigi
a) $1s^2 2s^2 2p^1$	b) $1s^2 2s^2 2p^3$	c) $1s^2 2s^2 2p^2$	d) $1s^2 2s^2 2p^4$
280. Most acidic oxide is	2) 10 10 1p	0) 10 2 0 2 p	., 10 10 1 p
a) Na ₂ 0	b) ZnO	c) MgO	d) P ₂ O ₅
281. The process requiring the	•	·	··) - 2 - 3

- a) $F \rightarrow F^-$
- b) $H \rightarrow H^-$
- c) $Cl \rightarrow Cl^-$
- d) $0 \to 0^{2-}$

- 282. Each of the followings has non-zero dipole moment, except:
 - a) C_6H_6
- b) CO

c) SO_2

d) NH₃

- 283. H-bonding is not present in:
 - a) Glycerine
- b) Water
- c) H₂S

- d) HF
- 284. Which formulae does not correctly represent the bonding capacity of the atom involved?

- 285. The higher values of specific heat of water in comparison to other liquids is due to:
 - a) High dielectric constant
 - b) Polarity
 - c) H-bonding
 - d) None of the above
- 286. Which one of the following combinations represents a metallic element?
 - a) 2, 8, 2
- b) 2, 8, 4
- c) 2, 8, 7
- d) 2, 8, 8

- 287. Which bond has the highest bond energy?
 - a) Coordinate bond b) Sigma bond
- c) Multiple bond
- d) Polar covalent bond
- 288. The increasing order of first ionisation enthalpies of the elements B, P, S and F (lowest first) is
 - a) F < S < P < B
- b) P < S < B < F
- c) B < P < S < F
- d) B < S < P < F

- 289. Which of the following pairs are isostructural?
 - a) SO_3^{2-} , NO_3^{-}
- b) BF_3 , NF_3
- c) BrO₃, XeO₃
- d) SF₄, XeF₄
- 290. The electronic configuration of transition elements is exhibited by
 - a) $(n-1)d^{1-10}$, ns^2 b) $ns^2(n-1)d^{10}$

291. The bond strength in O_2^+ , O_2^- , O_2^- and O_2^{2-} follows the order:

a)
$$0_2^{2-} > 0_2^- > 0_2 > 0_2^+$$

b)
$$0_2^+ > 0_2^- > 0_2^- > 0_2^2^-$$

a)
$$0_2^{2-} > 0_2^- > 0_2^- > 0_2^+$$
 b) $0_2^+ > 0_2^- > 0_2^- > 0_2^{2-}$ c) $0_2 > 0_2^- > 0_2^{2-} > 0_2^+$ d) $0_2^- > 0_2^{2-} > 0_2^+ > 0_2^+$

d)
$$0^{-}_{2} > 0^{2-}_{2} > 0^{+}_{2} > 0_{2}$$

- 292. The first ionisation energy of oxygen is less than that of nitrogen. Which of the following is the correct reason for this observation?
 - a) Lesser effective nuclear charge of oxygen than nitrogen
 - b) Lesser atomic size of oxygen than nitrogen
 - c) Greater interelectron repulsion between two electrons in the same p-orbital counter balances the increase in effective nuclear charge on moving from nitrogen to oxygen
 - d) Greater effective nuclear charge of oxygen than nitrogen
- 293. A C \equiv C bond is :
 - a) Weaker than C = C bond
 - b) Weaker than C C bond
 - c) Longer than C C bond
 - d) Shorter than C = C bond

294. Which is likely to have the highest melting point?

b) CsF

c) NH₃

- d) CHCl₃
- 295. Which of the two ions from the list given below that have the geometry that is explained by the same hybridization of orbitals, NO₂, NO₃, NH₂, NH₄, SCN⁻?
 - a) NO_2^- and NH_2^-
- b) NO_2^- and NO_3^- c) NH_4^+ and NO_3^- d) SCN^- and NH_2^-

- 296. Valency means:
 - a) Combining capacity of an element
 - b) Atomicity of an element
 - c) Oxidation number of an element
 - d) None of the above

297. The hybridization of	of carbon atoms in C — C sing	le bond of $HC \equiv C - CH =$	CH ₂ is:
a) $sp^3 - sp^3$	b) $sp^2 - sp^3$	c) $sp - sp^2$	d) $sp^3 - sp$
298. The IP_1 is maximun	n for:		
a) K	b) Na	c) Be	d) He
299. Which of the follow	ring has highest bond angle?		
a) H ₂ O	b) H ₂ S	c) NH ₃	d) PH ₃
300. The halogen that m	ost easily reduced is		
a) F ₂	b) Cl ₂	c) Br ₂	d) I ₂
301. The enhanced force	e of cohesion in metals is due	to:	
a) The covalent linl	kages between atoms		
b) The electrovalen	it linkages between atoms		
c) The lack of excha	ange of valency electrons		
d) The exchange en	ergy of mobile electrons		
302. Which contains bot	th polar and non-polar covale	ent bonds?	
a) NH ₄ Cl	b) HCN	c) H ₂ O ₂	d) CH ₄
303. Electron deficient s	pecies are known as:		
a) Lewis acids	b) Hydrophilic	c) Nucleophiles	d) Lewis bases
304. Metallic bonds do r	ot play a role in:		
a) Brass	b) Copper	c) Germanium	d) Zinc
305. A number of ionic of	compounds, $e.g.$, AgCl, CaF ₂ ,	BaSO ₄ are insoluble in wat	er. This is because:
a) Ionic compound	s do not dissolve in water		
b) Water has a high	dielectric constant		
c) Water is not a go	ood ionizing solvent		
d) These molecules	have exceptionally high attr	active forces in their lattic	e
306. Pauling's electrone	gativity values for elements a	are useful in predicting:	
a) Polarity of bonds	s in molecules		
b) Position of eleme	ents in electromotive series		
c) Coordination nu		JCATION	
	of various molecules	OCHTIVOTT	
-	ng elements, the most electro	negative is:	
a) Oxygen	b) Chlorine	c) Nitrogen	d) Fluorine
	of decreasing first ionization	_	
*	b) $C > Be > B > Li$		d) Be $>$ Li $>$ B $>$ C
	l of Na would be numerically	the same as:	
a) Electron affinity			
b) Electronegativity	•		
c) Electron affinity			
d) Ionization poten			
			respectively. If ' B ' is a noble gas
	answer from the following st	catements.	
V. 'A' has higher e	-		
VI. 'C' exists in $+2$			
VII. 'D' is an alkalin			
a) I and II	b) II and III	c) I and III	d) I, II and III
	zation of sulphur atom prese		-
a) sp, sp^2	b) sp^2 , sp^2	c) sp^2, sp^3	d) sp, sp^3
312. Dipole moment is e	-		
a) 1,4-dichloroben			
b) 1, 2-dichloroben			
c) <i>Trans-</i> 1, 2-dichl	oroethene		

				Opius Luacation	
040	d) Trans-1, 2-dicloro-2-bi				
313.	13. The formation of the oxide ion $O^{2-}(g)$ requires first an exothermic and then an endothermic step as shown				
	below $O(g) + e^- = O^-(g)$; $\Delta H^o = -142 \text{ kJ mol}^{-1}$				
	$O^{-}(g) + e^{-} = O^{2-}(g), \Delta H^{o} = 844 \text{ kJ mol}^{-1} \text{ This is because}$				
		st the addition of another ϵ	electron		
	b) Oxygen has high electro	o affinity			
	c) Oxygen is more electro	negative			
	d) O ⁻ ion has comparative	ely larger size than oxygen	atom		
314.	Which pair of the atomic r	numbers represents s-bloc	k elements?		
	a) 3, 12	b) 6, 12	c) 7, 15	d) 9, 17	
315.	Which of the following do	es not reflect the periodici	ty of elements?		
	a) Bonding behaviour	b) Electronegativity	c) Ionisation potential	d) Neutron/proton ratio	
316.	In the Periodic Table meta	als usually used as catalyst	belong to		
	a) <i>f -</i> block	b) <i>d</i> -block	c) <i>p</i> -block	d) s-block	
317.	Four diatomic species are	listed below in different s	equences. Which of these r	represents the correct order	
	of their increasing bond o		•	•	
	a) NO $< C_2^{2-} < O_2^{-} < He_2^+$				
	b) $C_2^{2-} < He_2^+ < NO < O_2^-$				
	c) $\text{He}_2^+ < 0_2^- < \text{NO} < C_2^{2-}$				
	d) $0_2^- < NO < C_2^{2-} < He_2^+$				
318	The increase in bond orde				
310.		h and increase in bond ene	rau		
	b) Decrease in bond lengt		rgy		
	c) Increase in bond length	The same of the sa			
	d) None of the above	i and bond energy			
210	•	ma aya aanlanay?			
319.	In which molecule all ator		a) DE	4) MIII	
220	a) CH ₄	b) BF ₃	c) PF ₃	d) NH ₃	
320.	Length of hydrogen bond			12.0.8	
	a) 3.0 Å	b) 2.75 Å	c) 2.6 Å	d) 3.2 Å	
321.	XeF ₆ is:				
	a) Octahedral				
	b) Pentagonal pyramidal				
	c) Planar				
	d) Tetrahedral				
322.	HCl molecule in the vapou	•			
	a) Non-polar bond	b) Ionic bond	c) Polar covalent bond	d) Pure covalent bond	
323.	Which of the following spe	ecies has a linear shape?			
	a) NO ₂ ⁺	b) 0 ₃	c) NO_2^-	d) SO ₂	
324.	Which represents a collec	tion of isoelectronic specie	s?		
	a) Be, Al ³⁺ , Cl ⁻	b) Ca ²⁺ , Cs ⁺ , Br	c) Na ⁺ , Ca ²⁺ , Mg ²⁺	d) N ^{3–} , F [–] , Na ⁺	
325.	In which of the following	molecules/ions are all the l	oonds not equal?		
	a) SF ₄	b) SiF ₄	c) XeF ₄	d) BF ₄	
326	Solid CH ₄ is:				
	a) Molecular solid	b) Ionic solid	c) Covalent solid	d) Not exist	
327	Which has the highest bor	nd energy?			
	a) Hydrogen bond	b) Triple bond	c) Double bond	d) Single bond	
328.	The electron affinity value	es (in kJ mol ^{–1}) of three ha	logens X,Y and Z are respe	ctively -349 , -333 and	
	-325. Then X , Y and Z res	• •	•		
	a) F ₂ , Cl ₂ and Br ₂	b) Cl ₂ , F ₂ and Br ₂	c) Cl ₂ , Br ₂ and F ₂	d) Br_2 , Cl_2 and F_2	
329.				in terms of increasing bond	

order?

a)
$$N_2^- < N_2^{2-} < N_2$$

b)
$$N_2^- < N_2 < N_2^2^-$$

a)
$$N_2^- < N_2^{2-} < N_2$$
 b) $N_2^- < N_2 < N_2^{2-}$ c) $N_2^{2-} < N_2^- < N_2$ d) $N_2 < N_2^{2-} < N_2^-$

d)
$$N_2 < N_2^{2-} < N_2^{-}$$

330. Be resembles much with

331. The pair of species with the same bond order is:

b)
$$N_2, O_2$$

c)
$$0^{2-}_{2}$$
, B_{2}

d)
$$O_2^+$$
, NO^+

332. Which molecule is planar?

c)
$$C_2H_4$$

333. Which is present in peroxides?

a)
$$0_2$$

b)
$$0^{2}$$

c)
$$0_2^{2-}$$

d)
$$0_{2}^{-}$$

334. The number of valency electrons in carbon atom is:

335. Which does not form two or more chlorides?

336. CCl₄ is insoluble in water because:

- a) CCl₄ is non-polar and water is polar
- b) Water is non-polar and CCl4 is polar
- c) Water and CCl₄ both are polar
- d) None of the above

337. In the transition of Cu to Cu^{2+} , there is a decrease in :

- a) Atomic number
- b) Atomic mass
- c) Equivalent weight
- d) Number of valency electrons

338. In coordinate bond, the acceptor atoms must essentially contain in its valency shell an orbitals:

a) With paired electron

339. Which one of the following statement is false?

- a) The electron affinity of chlorine is less than that of fluorine.
- b) The electronegativity of fluorine is more than that of chlorine.
- c) The electron affinity of bromine is less than that of chlorine.
- d) The electronegativity of chlorine is more than that of bromine.

340. Which of the following halides is most acidic?

341. Hybridization state of I in ICl₂⁺ is:

a)
$$dsp^2$$

c)
$$sp^2$$

342. Identify the correct order in which the covalent radius of the following elements increases

(I)Ti

(II) Ca

(III) Sc

343. Experiment shows that H_2O has a dipole moment whereas, CO_2 has not. Point out the structures which best illustrate these facts:

a)
$$O = C = O, H - O - H$$

b)
$$O$$
, H $-O-H$

$$^{c)}$$
 $0=C=0, M$

GPLUS EDUCATION

344. Which is chemically most active non-metal?

_				_		
Gpi	IJς	Fd	uc	atı	n	r

a) S b) O₂ c) F₂ d) N₂ 345. Electron affinity is the a) Energy released when an electron is added to an isolated atom in the gaseous state b) Benergy absorbed when an electron is added to an isolated atom in the gaseous state c). Energy required to talke out an electron from an isolated gaseous atom d) Power of an atom to attract an electron to itself 346. Which is paramagnetic? a) Cl₂O and Down of the file will be a) Equal to that of KF a) Equal to that of KF b) More than that of KF c) Equal to that of KF b) More than that of KF c) Equal to that of KP b) More than that of Nai 348. The bond order of CO molecule on the basis of molecular orbital theory is: a) Zero b) 2 c) 3 d) 1 349. Compounds formed by sp³ d²-hybridization will have configuration: a) Square planar b) Octahedral c) Trigonal hipyramidal d) Pentagonal bipyramidal 350. Ionic radii are: a) X (effective nuclear charge)² c) α effective nuclear charge)² c) α effective nuclear charge)² 351. The predominent intermolecular forces in hydrogen fluoride is due to: a) Dipole-induced dipole interaction c) Hydrogen bond interaction d) Dispersion interaction 352. Which of the following species does not exist under normal conditions? a) Be²- b) Be₂ c) B₂ d) Li₂ 353. An element with atomic number 21 is a d) Halogen b) Representative element c) Transition element 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Signa-bond b) Dipole-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO₂ b) SnO₂ b) SNO₂ c) CO₂ d) CaO 356. The correct order in which the first ionisation potential increases is a) Na, K, Be b) K, Na, Be c) K, Be, Na d) Be, Na, k 37. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and L, having atomic number 9, 17,35 and 53 respectively, is a) Cl > F> F> Cl > Br				Gpius Eaucation
a) Energy released when an electron is added to an isolated atom in the gaseous state b) Energy absorbed when an electron is added to an isolated atom in the gaseous state c) Energy required to take out an electron from an isolated gaseous atom d) Power of an atom to attract an electron to itself 346. Which is paramagnetic? a) Cl ₂ O ₀ b) Cl ₂ O ₇ c) Cl ₂ O d) ClO ₂ 347. The bond length of LiF will be a) Equal to that of KF b) More than that of KF c) Equal to that of KF b) More than that of NaF 348. The bond order of CO molecule on the basis of molecular orbital theory is: a) Zero b) 2 c) 3 d) 1 349. Compounds formed by sp ³ d ² -hybridization will have configuration: a) Square planar b) Octahedral c) Trigonal bipyramidal 350. Ionic radii are: a) < 1 refetcive nuclear charge) ² c) < effective nuclear charge d) Alpole-induced dipole interaction b) Dipole-dipole interaction c) Hydrogen bond interaction d) Dispersion interaction 352. Which of the following species does not exist under normal conditions? a) Be ² b) Be ₂ c) B ₂ d) Li ₂ 353. An element with atomic number 21 is a a) Halogen c) Transition element c) Transition element d) Alkali metal 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO ₂ b) SiO ₂ c) CO ₂ d) CaO 356. The correct order in which the first ionisation potential increases is a) Na, K, Be b) K, Na, Be c) K, Be, Na d) 15 Br > F > Cl 358. As the *-character of hybridization orbitals increases, the bond angle;	a) S	b) 0 ₂	c) F ₂	d) N ₂
b) Energy absorbed when an electron is added to an isolated atom in the gaseous state c) Energy required to take out an electron from an isolated gaseous atom d) Power of an atom to attract an electron to itself 346. Which is paramagnetic? a) Cl ₂ O ₆ b) Cl ₂ O ₇ c) Cl ₂ O d) ClO ₂ 347. The bond length of LiF will be a) Equal to that of KF c) Equal to that of KF c) Equal to that of NaF 348. The bond order of CO molecule on the basis of molecular orbital theory is: a) Zero b) 2 c) 3 349. Compounds formed by sp ³ d ² -hybridization will have configuration: a) Square planar b) Octahedral c) Trigonal bipyramidal d) Pentagonal bipyramidal 350. Ionic radii are: a) $\frac{1}{(\text{effective nuclear charge)^2}}$ c) \propto effective nuclear charge d) \propto (effective nuclear charge) 351. The predominent intermolecular forces in hydrogen fluoride is due to: a) Dipole-induced dipole interaction b) Dipole-dipole interaction c) Hydrogen bond interaction d) Disporsion interaction d) Disporsion interaction d) Disporsion interaction d) Alkali metal 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO ₂ b) SiO ₂ c) CO ₂ d) CaO 356. The correct order in which the first ionisation potential increases is a) Na, K, Be c) K, Be, Na d) B, Na, k 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) Cl > F > Br > 1 b) F > Cl > Br > I c) 1 > Br > F > Cl 358. As the s-character of hybridization robitals increases; the bond angle:	345. Electron affinity is	the		
c) Energy required to take out an electron from an isolated gaseous atom d) Power of an atom to attract an electron to itself 346. Which is paramagnetic? a) Cl ₂ O ₆ b) Cl ₂ O ₇ c) Cl ₂ O d) Cl ₀ C 347. The bond length of LiF will be a) Equal to that of KIF b) More than that of KIF c) Equal to that of KIF b) More than that of KIF c) Equal to that of NaF c) Equ	a) Energy released	when an electron is added	to an isolated atom in the gase	ous state
d) Power of an atom to attract an electron to itself 346. Which is paramagnetic? a) Cl ₂ O ₈ b) Cl ₂ O ₇ c) Cl ₂ O d) ClO ₂ 347. The bond length of LiF will be a) Equal to that of KF b) Bond to that of KF b) More than that of KF c) Equal to that of NaF d) Less than that of NaF 348. The bond order of CO molecule on the basis of molecular orbital theory is: a) Zero b) 2 c) 3 d) 1 349. Compounds formed by sp ³ d ² -hybridization will have configuration: a) Square planar b) Octahedral c) Trigonal bipyramidal d) Pentagonal bipyramidal d) Pentagonal bipyramidal 350. Ionic radii are: a) \frac{1}{\text{effective nuclear charge}} c) \frac{1}{\text{effective nuclear charge}} c) \times \f	b) Energy absorbed	d when an electron is added	l to an isolated atom in the gas	eous state
d) Power of an atom to attract an electron to itself 346. Which is paramagnetic? a) Cl ₂ O ₈ b) Cl ₂ O ₇ c) Cl ₂ O d) ClO ₂ 347. The bond length of LiF will be a) Equal to that of KF b) Bond to that of KF b) More than that of KF c) Equal to that of NaF d) Less than that of NaF 348. The bond order of CO molecule on the basis of molecular orbital theory is: a) Zero b) 2 c) 3 d) 1 349. Compounds formed by sp ³ d ² -hybridization will have configuration: a) Square planar b) Octahedral c) Trigonal bipyramidal d) Pentagonal bipyramidal d) Pentagonal bipyramidal 350. Ionic radii are: a) \frac{1}{\text{effective nuclear charge}} c) \frac{1}{\text{effective nuclear charge}} c) \times \f	c) Energy required	to take out an electron from	n an isolated gaseous atom	
340. Which is paramagnetic? a) 1020,6 b) Cl20,7 c) Cl20 d) ClO2 347. The bond length of LIF will be a) Equal to that of KF c) Equal to that of KF c) Equal to that of NaF 348. The bond order of CO molecule on the basis of molecular orbital theory is: a) Zero b) 2 c) 3 d) 1 349. Compounds formed by sp³d²-hybridization will have configuration: a) Square planar b) Octahedral c) Trigonal bipyramidal d) Pentagonal bipyramidal d) Pentagonal bipyramidal d) Pentagonal bipyramidal d) Fortagonal bipyramidal d) Fortagonal bipyramidal d) Fortagonal bipyramidal d) Fortagonal bipyramidal d) Pentagonal bipyramidal d) Pentagonal bipyramidal d) Pentagonal bipyramidal 350. Ionic radii are: 1 b) ≪ (effective nuclear charge)² c) ∝ effective nuclear charge)² c) ∝ effective nuclear charge d) ∝ (effective nuclear charge)² 351. The predominent intermolecular forces in hydrogen fluoride is due to: a) Dipole-induced dipole interaction b) Dipole-dipole interaction c) Hydrogen bond interaction d) Dispersion interaction 352. Which of the following species does not exist under normal conditions? a) Be²* b) Be₂ c) B₂ d) Li₂ 353. An element with atomic number 21 is a a) Halogen c) Transition element c) Transition element d) Alkali metal 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO₂ b) SiO₂ c) CO₂ d) Cao 356. The correct order in which the first ionisation potential increases is a) Na, K, Be b) K, Na, Be c) K, Ro, Na d) Be, Na, k 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) Cl > F > Br > I b) F > Cl > Br > I b) F > Cl > Br > Cl >			_	
a) Cl ₂ O ₆ b) Cl ₂ O ₇ c) Cl ₂ O d) Cl ₀ O 347. The bond length of LiF will be a gle gual to that of KiF will be a gle gual to that of KiF c) Equal to that of NaF 348. The bond order of CO molecule on the basis of molecular orbital theory is: a) Zero b) 2 349. Compounds formed by sp ³ d ² -hybridization will have configuration: a) Square planar b) Octahedral c) Trigonal bipyramidal d) Pentagonal bipyramidal d) Pentagonal bipyramidal 350. Ionic radii are: a) ≈ 1 cffective nuclear charge c) α effective nuclear charge) c) α effective nuclear char				
347. The bond length of LiF will be a) Equal to that of KF b) More than that of KF c) Equal to that of NaF d) Less than that of NaF 348. The bond order of CO molecule on the basis of molecular orbital theory is: a) Zero b) 2 c) 3 d) 1 349. Compounds formed by sp³d²-hybridization will have configuration: a) Square planar b) Octahedral c) Trigonal bipyramidal d) Pentagonal bipyramidal d) Pentagonal bipyramidal d) Pentagonal bipyramidal 350. Ionic radii are: a) ≪ 1 effective nuclear charge b) ∞ [effective nuclear charge]² c) ∞ effective nuclear charge? 351. The predominent intermolecular forces in hydrogen fluoride is due to: a) Dipole-induced dipole interaction b) Dipole-dipole interaction c) Hydrogen bond interaction d) Dispersion interaction 352. Which of the following species does not exist under normal conditions? a) Be²² b) Be₂ c) B₂ d) Li₂ 353. An element with atomic number 21 is a a) Halogen c) Transition element 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO₂ b) SiO₂ c) CO₂ d) CaO 356. The correct order in which the first ionisation potential increase is a) Na, K, Be b) K, Na, Be c) K, Ro, Na d) Be, Na, k 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) Cl > F > Br > I b) F > Cl > Br > I b) F > Cl > Br > I b) S = Cl > Br > I b) F > Cl > Br > I b) S = Cl >			c) Cl ₂ O	d) ClO_2
a) Equal to that of NGF Equal to that of NAF d) Less than that of NAF 348. The bond order of CO molecule on the basis of molecular orbital theory is: a) Zero b) 2 c) 3 d) 1 349. Compounds formed by \$p\$^3d^2\$-hybridization will have configuration: a) Square planar b) Octahedral c) Trigonal bipyramidal d) Pentagonal bipyramidal d) Pentagonal bipyramidal 350. Ionic radii are: a) \alpha \frac{1}{\text{effective nuclear charge}} b) \alpha \frac{1}{\text{effective nuclear charge}} c) \alpha \frac{1}{\text{effective nuclear charge}} c) \alpha \frac{1}{\text{effective nuclear charge}} c) \alpha \frac{1}{\text{effective nuclear charge}} 351. The predominent intermolecular forces in hydrogen fluoride is due to: a) Dipole-induced dipole interaction b) Dipole-dipole interaction c) Hydrogen bond interaction d) Dispersion interaction d) Alkali metal 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO2 b) SiO2 c) CO2 356. The correct order in which the first ionisation potential increases is a) Na, K, Be b) K, Na, Be c) K, Be, Na d) Be, Na, k 37. The correct order of beletron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) C F > Br > Cl > Br > Cl > Br > Cl > Br > Cl > F < d) 1 > Br > Cl > F < d) 1 > Br > Cl > F < d) 358.		· - ·	, ,	2
c) Equal to that of NaF 348. The bond order of CO molecule on the basis of molecular orbital theory is: a) Zero b) 2 c) 3 (d) 1 349. Compounds formed by sp^3d^2 -hybridization will have configuration: a) Square planar b) Octahedral c) Trigonal bipyramidal d) Pentagonal bipyramidal d) Pentagonal bipyramidal 350. Lonior radii are: a) $\propto \frac{1}{(effective nuclear charge)^2}$ c) $\propto \frac{1}{(effective nuclear charge)^2}$ c) $\propto effective nuclear charge)^2$ c) $\propto effective nuclear charge)^2$ 351. The predominent interraction b) Dipole-induced dipole interaction b) Dipole-induced dipole interaction b) Dipole-induced dipole interaction d) Dispole-induced	•		b) More than that of KI	7
348. The bond order of CO molecule on the basis of molecular orbital theory is: a) Zero b) 2 c) 3 d) 1 349. Compounds formed by sp^3d^2 -hybridization will have configuration: a) Square planar b) Octahedral c) Trigonal bipyramidal d) Pentagonal bipyr			•	
a) Zero b) 2 c) 3 d) 1 349. Compounds formed by sp^3d^2 -hybridization will have configuration: a) Square planar b) Octahedral c) Trigonal bipyramidal d) Pentagonal bipyramidal 350. Ionic radii are: a) $\propto \frac{1}{\text{effective nuclear charge}}$ b) $\propto \frac{1}{\text{effective nuclear charge}}$ c) $\propto \text{effective nuclear charge}$ d) $\propto (\text{effective nuclear charge})^2$ c) $\propto \text{effective nuclear charge}^2$ c) $\propto \text{effective nuclear charge}^2$ 351. The predominent intermolecular forces in hydrogen fluoride is due to: a) Dipole-induced dipole interaction b) Dipole-dipole interaction c) Hydrogen bond interaction d) Dispersion interaction 352. Which of the following species does not exist under normal conditions? a) Be ²⁺ b) Be ₂ c) B ₂ d) Li ₂ 353. An element with atomic number 21 is a a) Halogen c) Transition element d) Alkali metal 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO ₂ b) SiO ₂ c) CO ₂ d) CaO 356. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) Cl > F > Br > I b) F > Cl > Br > I c) I > Br > Cl > F d) 1 > Br > F > Cl				
349. Compounds formed by $sy^3 d^2$ -hybridization will have configuration: a) Square planar b) Octahedral c) Trigonal bipyramidal d) Pentagonal bipyramidal 350. Ionic radii are: a) $\propto \frac{1}{(effective nuclear charge)^2}$ c) $\propto \frac{1}{(effective nuclear charge)^2}$ c) $\propto \frac{1}{(effective nuclear charge)^2}$ 351. The predominent intermolecular forces in hydrogen fluoride is due to: a) Dipole-induced dipole interaction b) Dipole-dipole interaction c) Hydrogen bond interaction d) Dispersion interaction 352. Which of the following species does not exist under normal conditions? a) Be $^{2+}$ b) Be $_2$ c) B $_2$ d) Li $_2$ 353. An element with atomic number 21 is a a) Halogen c) Transition element c) Transition of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO $_2$ b) SiO $_2$ c) CO $_2$ d) CaO 356. The correct order in which the first ionisation potential increases is a) Na, K, Be b) K, Na, Be c) K, Be, Na d) Be, Na, k 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) Cl > F > Br > 1 b) F > Cl > Br > 1 c) I > Br > Cl > F d) I > Br > F > Cl				d) 1
a) Square planar b) Octahedral c) Trigonal bipyramidal d) Pentagonal bipyramidal 350. Ionic radii are: a) \(\int \frac{1}{\text{effective nuclear charge}} \) b) \(\int \frac{1}{\text{effective nuclear charge}} \) c) \(\text{effective nuclear charge} \) c) \(\text{effective nuclear charge} \) d) \(effective nucl	•	•	•	4, 1
b) Octahedral c) Trigonal bipyramidal d) Pentagonal bipyramidal 350. Ionic radii are: a) \(\int \frac{1}{\text{effective nuclear charge}} \) b) \(\int \frac{1}{\text{effective nuclear charge}} \) b) \(\int \frac{1}{\text{effective nuclear charge}} \) c) \(\int \text{effective nuclear charge} \) d) \(\int \text{effective nuclear charge}	-	i by sp a mybriaización w	in have comigaration.	
c) Trigonal bipyramidal d) Pentagonal bipyramidal 350. Ionic radii are: a) $\propto \frac{1}{\text{effective nuclear charge}}$ b) $\propto \frac{1}{\text{(effective nuclear charge)}^2}$ c) $\propto \text{effective nuclear charge}$ d) $\propto \text{(effective nuclear charge)}^2$ c) $\propto \text{effective nuclear charge}$ 351. The predominent intermolecular forces in hydrogen fluoride is due to: a) Dipole-induced dipole interaction b) Dipole-dipole interaction c) Hydrogen bond interaction d) Dispersion interaction 352. Which of the following species does not exist under normal conditions? a) Be ²⁺ b) Be ₂ c) B ₂ d) Li ₂ 353. An element with atomic number 21 is a a) Halogen b) Representative element c) Transition element d) Alkali metal 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO ₂ b) SiO ₂ c) CO ₂ d) CaO 356. The correct order in which the first ionisation potential increases is a) Na, K, Be b) K, Na, Be c) K, Be, Na d) Be, Na, k 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) Cl > F > Br > 1 b) F > Cl > Br > 1 c) I > Br > Cl > F d) I > Br > F > Cl 358. As the s-character of hybridization orbitals increases, the bond angle:				
d) Pentagonal bipyramidal 350. Ionic radii are: a) $\propto \frac{1}{\text{effective nuclear charge}}$ b) $\propto \frac{1}{(\text{effective nuclear charge})^2}$ c) $\propto \text{effective nuclear charge}$ d) $\propto (\text{effective nuclear charge})^2$ 351. The predominent intermolecular forces in hydrogen fluoride is due to: a) Dipole-induced dipole interaction b) Dipole-induced dipole interaction c) Hydrogen bond interaction d) Dispersion interaction 352. Which of the following species does not exist under normal conditions? a) Be ²⁺ b) Be ₂ c) B ₂ d) Li ₂ 353. An element with atomic number 21 is a a) Halogen c) Transition element d) Alkali metal 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following exides is amphoteric in character? a) SnO ₂ b) SiO ₂ c) CO ₂ d) CaO 356. The correct order in which the first ionisation potential increases is a) Na, K, Be b) K, Na, Be c) K, Be, Na d) Be, Na, k 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) Cl > F > Br > I b) F > Cl > Br > I c) I > Br > Cl > F c) Cl > Br > Cl > C	=	nidal		
$350. \ lonic radii are: \\ a) \propto \frac{1}{effective nuclear charge} \\ b) \propto \frac{1}{(effective nuclear charge)^2} \\ c) \propto effective nuclear charge)^2 \\ c) \propto effective nuclear charge)^2 \\ 351. \ The predominent intermolecular forces in hydrogen fluoride is due to: \\ a) \ Dipole-induced dipole interaction \\ b) \ Dipole-dipole interaction \\ c) \ Hydrogen bond interaction \\ d) \ Dispersion interaction \\ d) \ Dispersion interaction \\ 352. \ Which of the following species does not exist under normal conditions? \\ a) \ Be^{2+} \qquad b) \ Be_2 \qquad c) \ B_2 \qquad d) \ Li_2 \\ 353. \ An element with atomic number 21 is a \\ a) \ Halogen \qquad b) \ Representative element \\ c) \ Transition element \qquad d) \ Alkali metal \\ 354. \ Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: \\ a) \ Sigma-bond \\ b) \ Double-bond \\ c) \ Coordinate covalent bond \\ d) \ Pi-bond \\ 355. \ Which one of the following oxides is amphoteric in character? \\ a) \ SnO_2 \qquad b) \ SiO_2 \qquad c) \ CO_2 \qquad d) \ CaO \\ 356. \ The correct order in which the first ionisation potential increases is \\ a) \ Na, \ K, \ Be \qquad b) \ K, \ Na, \ Be \qquad c) \ K, \ Be, \ Na \qquad d) \ Be, \ Na, \ k$ $357. \ The correct order of electron gain enthalpy with negative sign of F, \ Cl, \ Br and \ I, having atomic number 9, \\ 17, \ 35 \ and \ 53 \ respectively, is \\ a) \ Cl > F > Br > I \qquad b) \ F > Cl > Br > I \qquad c) \ I > Br > Cl > F \qquad d) \ I > Br > F > Cl$ $358. \ As the s-character of hybridization orbitals increases, the bond angle:$				
a) $\propto \frac{1}{\text{effective nuclear charge}}$ b) $\propto \frac{1}{(\text{effective nuclear charge})^2}$ c) $\propto \text{effective nuclear charge}$ d) $\propto (\text{effective nuclear charge})^2$ c) $\propto \text{effective nuclear charge}$ d) $\propto (\text{effective nuclear charge})^2$ 351. The predominent intermolecular forces in hydrogen fluoride is due to: a) Dipole-induced dipole interaction b) Dipole-dipole interaction c) Hydrogen bond interaction d) Dispersion interaction 352. Which of the following species does not exist under normal conditions? a) Be ²⁺ b) Be ₂ c) B ₂ d) Li ₂ 353. An element with atomic number 21 is a a) Halogen b) Representative element c) Transition element d) Alkali metal 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO ₂ b) SiO ₂ c) CO ₂ d) CaO 356. The correct order in which the first ionisation potential increases is a) Na, K, Be b) K, Na, Be c) K, Be, Na d) Be, Na, k 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) Cl > F > Br > I b) F > Cl > Br > Cl > F d) I > Br > F > Cl 358. As the s-character of hybridization orbitals increases, the bond angle:		Tallilual		
$b) \propto \frac{1}{(\text{effective nuclear charge})^2} \\ c) \propto \text{effective nuclear charge} \\ d) \propto (\text{effective nuclear charge})^2 \\ 351. The predominent intermolecular forces in hydrogen fluoride is due to: \\ a) Dipole-induced dipole interaction \\ b) Dipole-dipole interaction \\ c) Hydrogen bond interaction \\ d) Dispersion interaction \\ 352. Which of the following species does not exist under normal conditions? \\ a) Be^2 $	350, Ionic radii are:			
$b) \propto \frac{1}{(\text{effective nuclear charge})^2} \\ c) \propto \text{effective nuclear charge} \\ d) \propto (\text{effective nuclear charge})^2 \\ 351. The predominent intermolecular forces in hydrogen fluoride is due to: \\ a) Dipole-induced dipole interaction \\ b) Dipole-dipole interaction \\ c) Hydrogen bond interaction \\ d) Dispersion interaction \\ 352. Which of the following species does not exist under normal conditions? \\ a) Be^2 $	a) $\propto \frac{1}{e^{G_{2}} + e^{G_{2}}}$			
c) \propto effective nuclear charge d) \propto (effective nuclear charge)² 351. The predominent intermolecular forces in hydrogen fluoride is due to: a) Dipole-induced dipole interaction b) Dipole-dipole interaction c) Hydrogen bond interaction d) Dispersion interaction d) Dispersion interaction 352. Which of the following species does not exist under normal conditions? a) Be²+ b) Be₂ c) B₂ d) Li₂ 353. An element with atomic number 21 is a a) Halogen b) Representative element d) Alkali metal 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO₂ b) SiO₂ c) CO₂ d) CaO 356. The correct order in which the first ionisation potential increases is a) Na, K, Be b) K, Na, Be c) K, Be, Na d) Be, Na, k 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) Cl > F > Br > I b) F > Cl > Br > I c) I > Br > Cl > F d) I > Br > F > Cl 358. As the s-character of hybridization orbitals increases, the bond angle:				
c) \propto effective nuclear charge d) \propto (effective nuclear charge)² 351. The predominent intermolecular forces in hydrogen fluoride is due to: a) Dipole-induced dipole interaction b) Dipole-dipole interaction c) Hydrogen bond interaction d) Dispersion interaction d) Dispersion interaction 352. Which of the following species does not exist under normal conditions? a) Be²+ b) Be₂ c) B₂ d) Li₂ 353. An element with atomic number 21 is a a) Halogen b) Representative element d) Alkali metal 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO₂ b) SiO₂ c) CO₂ d) CaO 356. The correct order in which the first ionisation potential increases is a) Na, K, Be b) K, Na, Be c) K, Be, Na d) Be, Na, k 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) Cl > F > Br > I b) F > Cl > Br > I c) I > Br > Cl > F d) I > Br > F > Cl 358. As the s-character of hybridization orbitals increases, the bond angle:	b) $\propto \frac{1}{(affactive nuclear)}$	laamahamaa)?		
d) ∝ (effective nuclear charge)² 351. The predominent intermolecular forces in hydrogen fluoride is due to: a) Dipole-induced dipole interaction b) Dipole-dipole interaction c) Hydrogen bond interaction d) Dispersion interaction 352. Which of the following species does not exist under normal conditions? a) Be²+ b) Be₂ c) B₂ d) Li₂ 353. An element with atomic number 21 is a a) Halogen c) Transition element d) Alkali metal 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO₂ b) SiO₂ c) CO₂ d) CaO 356. The correct order in which the first ionisation potential increases is a) Na, K, Be b) K, Na, Be c) K, Be, Na d) Be, Na, k 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) Cl > F > Br > I b) F > Cl > Br > I c) I > Br > Cl > F d) I > Br > F > Cl 358. As the s-character of hybridization orbitals increases, the bond angle:			. >	
351. The predominent intermolecular forces in hydrogen fluoride is due to: a) Dipole-induced dipole interaction b) Dipole-dipole interaction c) Hydrogen bond interaction d) Dispersion interaction 352. Which of the following species does not exist under normal conditions? a) Be ²⁺ b) Be ₂ c) B ₂ d) Li ₂ 353. An element with atomic number 21 is a a) Halogen c) Transition element d) Alkali metal 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO ₂ b) SiO ₂ c) CO ₂ d) CaO 356. The correct order in which the first ionisation potential increases is a) Na, K, Be b) K, Na, Be c) K, Be, Na d) Be, Na, k 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) Cl > F > Br > I b) F > Cl > Br > I c) I > Br > Cl > F d) I > Br > F > Cl 358. As the s-character of hybridization orbitals increases, the bond angle:	<u>-</u>	-		
a) Dipole-induced dipole interaction b) Dipole-dipole interaction c) Hydrogen bond interaction d) Dispersion interaction 352. Which of the following species does not exist under normal conditions? a) Be ²⁺ b) Be ₂ c) B ₂ d) Li ₂ 353. An element with atomic number 21 is a a) Halogen c) Transition element d) Alkali metal 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO ₂ b) SiO ₂ c) CO ₂ d) CaO 356. The correct order in which the first ionisation potential increases is a) Na, K, Be b) K, Na, Be c) K, Be, Na d) Be, Na, k 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) Cl > F > Br > I b) F > Cl > Br > I c) I > Br > Cl > F d) I > Br > F > Cl 358. As the s-character of hybridization orbitals increases, the bond angle:		_	9 11 1 1	
b) Dipole-dipole interaction c) Hydrogen bond interaction d) Dispersion interaction 352. Which of the following species does not exist under normal conditions? a) Be ²⁺ b) Be ₂ c) B ₂ d) Li ₂ 353. An element with atomic number 21 is a a) Halogen b) Representative element c) Transition element d) Alkali metal 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO ₂ b) SiO ₂ c) CO ₂ d) CaO 356. The correct order in which the first ionisation potential increases is a) Na, K, Be b) K, Na, Be c) K, Be, Na d) Be, Na, k 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) Cl > F > Br > I b) F > Cl > Br > I c) I > Br > Cl > F d) I > Br > F > Cl 358. As the s-character of hybridization orbitals increases, the bond angle:	-	-	rogen fluoride is due to:	
c) Hydrogen bond interaction d) Dispersion interaction 352. Which of the following species does not exist under normal conditions? a) Be ²⁺ b) Be ₂ c) B ₂ d) Li ₂ 353. An element with atomic number 21 is a a) Halogen b) Representative element c) Transition element d) Alkali metal 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO ₂ b) SiO ₂ c) CO ₂ d) CaO 356. The correct order in which the first ionisation potential increases is a) Na, K, Be b) K, Na, Be c) K, Be, Na d) Be, Na, k 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) Cl > F > Br > I b) F > Cl > Br > I c) I > Br > Cl > F d) I > Br > F > Cl 358. As the s-character of hybridization orbitals increases, the bond angle:				
d) Dispersion interaction 352. Which of the following species does not exist under normal conditions? a) Be ²⁺ b) Be ₂ c) B ₂ d) Li ₂ 353. An element with atomic number 21 is a a) Halogen b) Representative element c) Transition element d) Alkali metal 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO ₂ b) SiO ₂ c) CO ₂ d) CaO 356. The correct order in which the first ionisation potential increases is a) Na, K, Be b) K, Na, Be c) K, Be, Na d) Be, Na, k 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) Cl > F > Br > I b) F > Cl > Br > I c) I > Br > Cl > F d) I > Br > F > Cl 358. As the s-character of hybridization orbitals increases, the bond angle:			UCATION	
352. Which of the following species does not exist under normal conditions? a) Be^{2+} b) Be_2 c) B_2 d) Li_2 353. An element with atomic number 21 is a a) Halogen b) Representative element c) Transition element d) Alkali metal 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO_2 b) SiO_2 c) CO_2 d) CO_2 356. The correct order in which the first ionisation potential increases is a) CO_2 d) CO_2 d) CO_2 d) CO_2 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) CO_2 F> CO_2 d) CO_2		interaction	00/11/011	
a) Be^{2+} b) Be_2 c) Be_2 d) Le_2 353. An element with atomic number 21 is a a) Halogen b) Representative element c) Transition element d) Alkali metal 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO_2 b) SiO_2 c) CO_2 d) CO_2 356. The correct order in which the first ionisation potential increases is a) CO_2 d) CO_2 d) CO_2 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) $CO_2 > CO_2 $	-			
353. An element with atomic number 21 is a a) Halogen b) Representative element c) Transition element d) Alkali metal 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SNO_2 b) SIO_2 c) CO_2 d) CO_2 356. The correct order in which the first ionisation potential increases is a) Na , K , Be b) K , Na , Be c) K , Be , Na d) Be , Na , K 357. The correct order of electron gain enthalpy with negative sign of F , CI , F and I , having atomic number 9, 17, 35 and 53 respectively, is a) $CI > F > Br > I$ b) $F > CI > Br > I$ c) $I > Br > CI > F$ d) $I > Br > F > CI$ 358. As the S -character of hybridization orbitals increases, the bond angle:				
a) Halogen c) Transition element d) Alkali metal 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO2 b) SiO2 c) CO2 d) CaO 356. The correct order in which the first ionisation potential increases is a) Na, K, Be b) K, Na, Be c) K, Be, Na d) Be, Na, k 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) Cl > F > Br > I b) F > Cl > Br > I c) I > Br > Cl > F d) I > Br > F > Cl 358. As the s-character of hybridization orbitals increases, the bond angle:			c) B ₂	d) Li ₂
c) Transition element d) Alkali metal 354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond	353. An element with at	omic number 21 is a		
354. Linear combination of two hybridized orbitals, belonging to two atoms and each having one electron leads to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO_2 b) SiO_2 c) CO_2 d) CO_2 356. The correct order in which the first ionisation potential increases is a) CO_2 d) CO_2 d) CO_2 357. The correct order of electron gain enthalpy with negative sign of CO_2 d) CO_2 358. As the CO_2 d) CO_2	a) Halogen		b) Representative elem	nent
to: a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO_2 b) SiO_2 c) CO_2 d) CaO 356. The correct order in which the first ionisation potential increases is a) $CI > F > Br > I$ b) $CI > Br > I$ c) $CI > Br > CI > F$ d) $CI > Br > CI$ 358. As the s-character of hybridization orbitals increases, the bond angle:	c) Transition eleme	ent	d) Alkali metal	
a) Sigma-bond b) Double-bond c) Coordinate covalent bond d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO_2 b) SiO_2 c) CO_2 d) CaO_3 356. The correct order in which the first ionisation potential increases is a) Na, K, Be b) K, Na, Be c) K, Be, Na d) Be, Na, k 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) $Cl > F > Br > I$ b) $F > Cl > Br > I$ c) $I > Br > Cl > F$ d) $I > Br > F > Cl$ 358. As the s-character of hybridization orbitals increases, the bond angle:	354. Linear combination	າ of two hybridized orbitals	, belonging to two atoms and o	each having one electron leads
b) Double-bond c) Coordinate covalent bond d) Pi-bond $355. \ \ \ \ \ \ \ \ \ \ \ \ \ $	to:			
c) Coordinate covalent bond d) Pi-bond $355. \ \ \ \ \ \ \ \ \ \ \ \ \ $	a) Sigma-bond			
d) Pi-bond 355. Which one of the following oxides is amphoteric in character? a) SnO_2 b) SiO_2 c) CO_2 d) CO_3 356. The correct order in which the first ionisation potential increases is a) CO_3 a) CO_3 d) CO_3 d) CO_3 d) CO_3 d) CO_3 356. The correct order in which the first ionisation potential increases is a) CO_3 a) CO_3 d) $CO_$	b) Double-bond			
355. Which one of the following oxides is amphoteric in character? a) SnO_2 b) SiO_2 c) CO_2 d) CaO_3 356. The correct order in which the first ionisation potential increases is a) Na , K , Be b) K , Na , Be c) K , Be , Na d) Be , Na , K 357. The correct order of electron gain enthalpy with negative sign of F , Cl , E and E are all E and E are all E and E are all E are all E and E are all E	c) Coordinate cova	lent bond		
a) SnO_2 b) SiO_2 c) CO_2 d) CaO_3 356. The correct order in which the first ionisation potential increases is a) Na, K, Be b) K, Na, Be c) K, Be, Na d) Be, Na, k 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) $Cl > F > Br > I$ b) $F > Cl > Br > I$ c) $I > Br > Cl > F$ d) $I > Br > F > Cl$ 358. As the s-character of hybridization orbitals increases, the bond angle:	d) Pi-bond			
a) SnO_2 b) SiO_2 c) CO_2 d) CaO_3 356. The correct order in which the first ionisation potential increases is a) Na, K, Be b) K, Na, Be c) K, Be, Na d) Be, Na, k 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) $Cl > F > Br > I$ b) $F > Cl > Br > I$ c) $I > Br > Cl > F$ d) $I > Br > F > Cl$ 358. As the s-character of hybridization orbitals increases, the bond angle:	355. Which one of the fo	ollowing oxides is amphoter	ric in character?	
356. The correct order in which the first ionisation potential increases is a) Na, K, Be				d) CaO
a) Na, K, Be b) K, Na, Be c) K, Be, Na d) Be, Na, k 357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) $Cl > F > Br > I$ b) $F > Cl > Br > I$ c) $I > Br > Cl > F$ d) $I > Br > F > Cl$ 358. As the s-character of hybridization orbitals increases, the bond angle:	-	, -	, -	,
357. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I, having atomic number 9, 17, 35 and 53 respectively, is a) $Cl > F > Br > I$ b) $F > Cl > Br > I$ c) $I > Br > Cl > F$ d) $I > Br > F > Cl$ 358. As the <i>s</i> -character of hybridization orbitals increases, the bond angle:				d) Be. Na. k
17, 35 and 53 respectively, is a) $Cl > F > Br > I$ b) $F > Cl > Br > I$ c) $I > Br > Cl > F$ d) $I > Br > F > Cl$ 358. As the <i>s</i> -character of hybridization orbitals increases, the bond angle:	•		•	-
a) $Cl > F > Br > I$ b) $F > Cl > Br > I$ c) $I > Br > Cl > F$ d) $I > Br > F > Cl$ 358. As the <i>s</i> -character of hybridization orbitals increases, the bond angle:				,
358. As the <i>s</i> -character of hybridization orbitals increases, the bond angle:	-	•	c) I > Br > Cl > F	d) I > Br > F > Cl
	•	•	•	m, 1 21 - 1 - UI
		=	-	d) Becomes zero
	a, mereuoo	2, 2 001 04000	o, 2000 not ondingo	, 2000mes 2010

		opius zaacation
359. Dipole-dipole attractive forces are strongest between		D.H. O
a) He b) CH ₄	c) CO ₂	d) H ₂ O
360. Among Na ⁺ , Na, Mg and Mg ²⁺ , the largest particle is a) Mg ²⁺ b) Mg	c) Na	d) Na ⁺
361. If the IP of Na is 5.48 eV, the ionisation potential of I	•	u) Na
a) Same as that of Na b) 4.34 eV	c) 5.68 eV	d) 10.88 eV
362. The electronic configuration of the atom having may		
energies is		ia secona fornsacion
a) $1s^2, 2s^2, 2p^6, 3s^1$	b) $1s^2$, $2s^2$, $2p^6$, $3s^2$	
c) $1s^2, 2s^2, 2p^1$	d) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^1$	
363. Amongst LiCl, RbCl, BeCl ₂ and MgCl ₂ , the composition		d the least ionic character
respectively are:	O	
a) LiCl and RbCl b) RbCl and BeCl ₂	c) RbCi and MgCl ₂	d) MgCl ₂ and BeCl ₂
364. Pick the odd man out (The one having zero dipole m	noment):	,
a) NH ₃ b) H ₂ O	c) BCl ₃	d) SO ₂
365. The property of attracting electrons by the halogen	atoms in a molecule is calle	ed
a) Ionisation potential b) Electrons affinity	c) Electronegtivity	d) Electronic attraction
366. The oxide of an element whose electronic configura	tion is $1s^2$, $2s^2$, $2p^6$, $3s^1$ is	
a) Neutral b) Amphoteric	c) Basic	d) Acidic
367. Which among the following elements has lowest val	ue of ionisation energy?	
a) Mg b) Ca	c) Ba	d) Sr
368. The pair of elements which on combination are mos	-	-
a) Na and Ca b) K and O ₂	c) O ₂ and Cl ₂	d) Al and I ₂
369. A molecule which cannot exist theoretically is:		
a) SF ₄ b) OF ₂	c) 0F ₄	d) O_2F_2
370. The ions O^{2-} , F^{-} , Na^{+} , Mg^{2+} and $A1^{3+}$ are isoelectron		
a) A decrease from 0^{2-} to F^{-} and then increase from	n Na ⁺ to Al ³⁺	
b) A significant increase from 0^2 -to Al^{3+}	.AHON	
c) A significant decrease from O ² -to Al ³⁺	NT + 4 A13+	
d) An increase from O ²⁻ to F ⁻ and then decrease fro		C
371. A sudden large jump between the values of second a	and third ionisation energie	es of an element would be
associated with the electronic configuration a) $1s^2$, $2s^2$, $2p^6$, $3s^2$	b) $1s^2$, $2s^2$, $2p^6$, $3s^1$	
c) $1s^2, 2s^2, 2p^6, 3s^2$	d) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^2$	
372. Among O, C, F, Cl, Br the correct order of increasing a		
a) $F < 0 < C < Cl < Br$ b) $F < C < 0 < Br < Cl$		d) C < 0 < F < Cl < Br
373. The correct order of radii is:	c) r < cr < br < 0 < c	u) c < 0 < 1 < c1 < b1
	c) Na < Li < K	d) $Fe^{3+} < Fe^{2+} < Fe^{4+}$
374. The ionic radius of 'Cr' is minimum in which of the f	•	ujie vie vie
a) CrO ₂ b) K ₂ CrO ₄	c) CrF ₃	d) CrCl ₃
375. Which molecule has trigonal planar geometry?	cy arr 3	u) or org
a) IF ₃ b) PCl ₃	c) NH ₃	d) BF ₃
376. Which is the general outer electronic configuration	, ,	, 3
a) ns^2np^6 b) $(n-1)d^{10}ns^1$	c) $(n-1)d^{10}ns^2$	d) $(n-1)d^9ns^2$
377. Which among the following elements have lowest va	alue of IE ₁ ?	, ,
a) Pb b) Sn	c) Si	d) C
378. The values of electronegativity of atom A and B are	1.20 and 4.0 respectively. T	he percentage of ionic
character of $A - B$ bond is	- •	-
a) 58.3% b) 48%	c) 79.6%	d) 73.6%
379. Which of the following element is most electroposit	ive?	

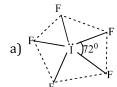
Gplus Education
) None of these

			Opius Ludeatio.
a) Al	b) Mg	c) P	d) S
380. Super octet molecule is:			
a) F ₃ Cl	b) PCl ₃	c) NH ₃	d) None of these
381. Which of the following e			12 =1
a) Li	b) Mg	c) Ca	d) Rb
382. An element <i>X</i> which occ		has an outer electronic stru	icture s^2p^4 . What are the
formula and acid-base cl			
a) XO_3 , basic	b) X_2O_3 , basic	c) X_2O_3 , amphoteric	d) XO_2 , acidic
383. The diamagnetic molecu			D. D. O. M
a) B_2 , C_2 , N_2	b) O ₂ , N ₂ , F ₂	c) C_2 , N_2 , F_2	d) B_2 , O_2 , N_2
384. Which of the following e			12 2 3
a) ns^2np^6	b) ns^2np^5	c) ns^2np^4	d) ns^2np^3
385. The number of naturally			1) =
a) 18	b) 6	c) 5	d) 7
386. Which of the following e			1) (1 1 1
a) Carbon	b) Barium	c) Nitrogen	d) Sulphur
387. The pair likely to form the	ie strongest nyarogen bona	ing:	
a) H_2O_2 and H_2O_2	т		
b) HCOOH and CH ₃ COOI			
c) CH ₃ COOH and CH ₃ CO	OCH ₃		
d) SiH ₄ and SiCl ₄	tonia found in which of the	fallowing?	
388. Highest covalent charact		_	d) CoDr
a) CaF ₂	b) CaCl ₂	c) CaI ₂	d) CaBr ₂
389. How many bridging oxy	770		4) F
a) 6	b) 4	c) 2	d) 5
390. Which element has the h	b) 0	c) Mg	d) S
391. Metallic nature and basi			u) s
a) Increases	t nature of the oxides as	b) Decreases	
c) Remains constant		d) First increases then de	crosece
392. In which block does 106	th alamant halang?	d) First mereases then de	ci eases
a) s-block	b) <i>p</i> -block	c) <i>d</i> -block	d) <i>f</i> -block
393. Which of the following is	· ·	c) u-block	u) j -block
a) NaCl	b) KCl	c) MgCl ₂	d) CaCl ₂
394. Which one of the followi	*		· -
a) $F_2 > Cl_2 > Br_2 > I_2$:	_	6 with the property stated	agamse ic.
	Bond dissociation energy		
c) $F_2 > Gl_2 > Br_2 > I_2$:			
	F: Acidic property in water		
395. Which one is electron de			
a) NH ₃	b) ICl	c) BCl ₃	d) PCl ₃
396. Which of the following is	•	-) =3)3
a) Na ⁺	b) Mg ²⁺	c) 0 ²⁻	d) F-
397. Which of the following h			, -
a) 0 ₂	b) 0 ⁺ ₂	c) 0^{-}_{2}	d) O ₂ ²⁻
398. Ionisation energy in gro	, <u>-</u>	· -	· y - <u>Z</u>
a) Li $> Na > K > Cs$	b) Na $> Li > K > Cs$	-	d) $K > Cs > Na > Li$
399. Paramagnetism is exhibit			,
a) Not attracted into a m	=		
b) Containing only paire	-		
, , , , , ,			

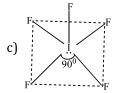
c) Carrying a positive	_		
d) Containing unpair			
	der in nitrogen and oxygen m		D 4 0
a) 3, 2	b) 4, 2	c) 2,3	d) 1, 2
	lic Table, the atomic radii fro		
a) Continuously decr	eases	b) Continuously increase	
c) Remains constant		d) Increases but not con	tinuously
402. Which has a giant cov) N. Gl	D. Algi
a) PbO ₂	b) SiO ₂	c) NaCl	d) AlCl ₃
	ctron and shows paramagne		Duro
a) NO	b) SO ₂	c) CO ₂	d) H ₂ O
	increasing bond length of C –	H, C = 0, C = C and $C = C$ is	3:
a) $C - H < C - 0 < C$			
b) $C - H < C = C < C$			
c) $C - C < C = C < C$			
d) $C - 0 < C - H < C$. – t < t = t		
405. NF ₃ is:	J		
a) Non-polar compou			
b) Electrovalent com	=		
_	of dipole moment than NH ₃		
d) Having more dipol			
406. Atomic radii of F and		a) 1.6.1.F0	d) 0.71 0.72
a) 0.72, 0.71	b) 0.72, 1.6	c) 1.6, 1.58	d) 0.71, 0.72
	removed from an atom, its en		d) None of these
a) Increase	b) Decrease	c) Remains the same	d) None of these
	$ving p\pi - d\pi$ bonding is obse		d) CO2-
a) NO ₃	b) SO ₃ ²	c) BO ₃ -	d) CO ₃ ²
	lone pair occupy equatorial	position to minimize :	
a) Lone pair-bond pa	•		
b) Bond pair-found p	air repuision only r repulsion and lone pair-bor	ad nair rapulaion	
d) Lone pair-lone pai	•	iu pair repuision	
,	•		
410. The number of lone p a) BCl ₃	b) NCl_3	c) CCl ₄	d) PCl ₅
411. As a result of resonar	, ,	c) cc1 ₄	u) r ci ₅
a) Bond length decre			
b) Energy of the mole			
c) Stability of the mo			
d) All are correct	iccuic increases		
•	ormed when a molecule of K	Fe(CN), dissociate is:	
a) 4	b) 5	c) 6	d) 2
413. Polar covalent compo	•	c) o	uj Z
a) Polar solvents	b) Non-polar solvents	c) Concentrated acids	d) All solvents
=	omic numbers 9, 17, 35, 53, 8	•	a) Im solvenes
a) Halogens	b) Noble gases	c) Heavy metals	d) Light metals
	owing has highest ionic radio	- · ·	a) light metals
a) F	b) B ³⁺	c) 0 ²⁻	d) Li ⁺
	med by the head on overlapp	,	~, <u> </u>
a) $2s$ - and $2p$ -orbital		c) 2s- and 2s-orbitals	d) All of these
	$^+ \rightarrow A^{2+} + e$, E_2 . The energy		
, 1	. 2	_	1 4

1 m1	1 1 . 1	1.1.1	•
respectively. The correct re	-	••	J) E / E
	b) $E_1 > E_2$	c) $E_1 = E_2$	$d) E_1 \neq E_2$
418. The element having highes) El	1) (1) 1
	b) Iodine	c) Fluorine	d) Chlorine
419. Fluorine has low electron a			
a) Bigger radius of fluorine	=	b) Smaller radius of fluori	-
c) Smaller radius of chloring	=	d) Smaller radius of chlori	ne, less density
420. The angle between two cov			
*	b) H ₂ O	c) CO ₂	d) SO ₃
421. Which species has lone pai			
-	b) CH ₄	c) NH ₄ ⁺	d) H ₂ O
422. The decreasing order of the	e second ionization energy	y of K, Ca and Ba is:	
a) K > Ca > Ba	b) Ca > Ba > K	c) Ba > K > Ca	d) K > Ba > Ca
423. Which contains both coval	ent and ionic bonds?		
a) CCl ₄	b) KCN	c) CaCl ₂	d) H ₂ O
424. The covalency of nitrogen	in HNO ₃ is :		
a) Zero	b) 3	c) 4	d) 5
425. The orbitals of same energ	y level providing the most	efficient overlapping are:	
	b) <i>sp</i> – <i>sp</i>	c) $sp^2 - sp^2$	d) All of these
426. Which of the following has			
	b) Na	c) Fe	d) 0
427. The general electronic con:	*		,
a) $(n-1)d^{10}$, $(n+1)s^2$	0	b) $(n-1)d^{1-10}$, $(n+1)s^1$.–2
c) $(n-1)d^{1-10}, np^6, ns^2$	41 '	d) $(n-1)d^{1-10}$, ns^{1-2}	
428. The order of first electron	affinity of O.S. and Se is:	4) (10 1) 40) 100	
	b) S > 0 > Se	c) Se > 0 > S	d) $Se > S > 0$
429. Which of the following oxid	*		4,500 / 0 / 0
	b) SnO ₂	c) Al ₂ O ₃	d) BeO
430. Which of the following is is			u) beo
	b) Al ³⁺	c) 0^{2-}	d) N ⁺
431. The ionic radii of ioselectro	•	-, -	u) N
			J) 1 71 1 26 1 40
	b) 1.36, 1.71, 1.40	c) 1.71, 1.40, 1.36	d) 1.71, 1.36, 1.40
432. Which bond angle, θ would	a result in the maximum	dipole moment for the tria	tomic molecule XY_2 shown
below?	1.) 0. 4000) 0 4500	1) 0 4000
,	b) $\theta = 120^{\circ}$	c) $\theta = 150^{\circ}$	d) $\theta = 180^{\circ}$
433. The electronegativity value		o, 2.1, 3.5, 3.0 and 2.5 respe	ctively. Which of the
following bonds is most po			
	b) N — H	c) S — H	d) 0 – H
434. Which of the following seq		_	
a) $\text{Li}_2\text{O} > \text{BeO} > \text{CO}_2 > \text{N}_2$		b) $CO_2 > N_2O_3 > B_2O_3 >$	
c) $N_2O_3 > CO_2 > B_2O_3 > 1$		d) $CO_2 > BeO > Li_2O > B$	
435. In which o the following co	=		onic character:
a) H ₂ O	b) HF	c) IBr	d) N_2O_4
436. Which ion has a higher pol-	arizing power?		
a) Mg ²⁺	b) Al ³⁺	c) Ca ²⁺	d) Na ⁺
437. The first ionisation potenti	al is maximum for		
a) B	b) N	c) 0	d) Be
438. The highest first ionisation	potential is of		
	b) Boron	c) Oxygen	d) Nitrogen
439. The ionic radii (Å) of C^{4-} ar	nd 0 ^{2–} respectively are 2.0	60 and 1.40. The ionic radiu	is of the isoelectronic ion

2			Gpius Eaucation
N ³ -would be	1) 4.74	3.4.4	12.0.05
a) 2.6	b) 1.71	c) 1.4	d) 0.95
	atom, the energy of a 2 p -orbi	tal is :	
a) Less than that o			
b) More than that			
c) Equal to that of			
d) Double that of 2			
441. The bond angle in	_		
a) Much lesser tha	-		
b) Equal to that in	-		
c) Much greater th	_		
d) Slightly more th	_	that of CCl : harana	- CCl :-
_	nt of CHCl ₃ is 1.05 debye while		
a) Linear	b) Symmetrical	c) Planar	d) Regular tetrahedral
443. The high boiling po			
	on of water molecules		
	ing among water molecules		
c) Its high specific			
d) Its high dielectr			
_	paired electrons in O ₂ molecule		1) 2
a) Zero	b) 1	c) 2	d) 3
	n general, is exhibited by	a) Non motals	d) a block alamenta
a) Transition elem446. Which statement is	-	c) Non-metals	d) s-block elements
	s true: e water does not contain any io	n	
	compounds may also give ions		
-	tion only electrovalent compo	-	
	soluble substances do not disso		
447. The bond strength		clate iii aqueous solution	
a) With increasing			
-	g extent of overlapping of orbita	alc	
-	g difference between energies (
d) All of the above	9	or overlapping or bitals	
		and than the expected wa	llues of atomic radii of K and F
should be respecti		each, then the expected va	nues of atomic raun of K and F
a) 1.34 and 1.34 Å	-	c) 0.64 and 2.31 Å	d) 2.31 and 1.34 Å
449. Which species is p	•	c) 0.04 and 2.51 A	u) 2.51 allu 1.54 A
-	•	a) CO	d) NO ⁺
a) $0\frac{1}{2}$	b) CH ₃ mation takes place when:	c) CO	u) NO
a) Energy is absor	-		
, 0,	tion overcome forces of repuls	ion	
	sion overcome forces of attract		
	tion are equal to forces of repu		
	ole moment, while BeF ₂ has zer		
	s linear while BeF ₂ is bent	o dipole moment, because.	
	is linear while H_2O is bent		
	e electronegative than oxygen		
	tronegative than oxygen		
452. Which has the sma			
a) Na ⁺	b) Mg ²⁺	c) Al ³⁺	d) P ⁵⁺
w, 114	~ / ^ ^ >	~ 1 * * *	~, ·


			Gpius Education
453	. Observe the following statement		
		roperties of elements are periodic fu	inctions of their electronic
	configuration.		
	IX. Electronegativity of fluorine is le		orine.
	X. Electropositive nature decreases	s from top to bottom in a group.	
	The correct answer is		
	a) I, II and III are correct	b) Only I is correct	
	c) Only I and II is correct	d) Only II and III a	re correct
454	. The only non-metal which is liquid a	•	
	a) Hg b) Br ₂	c) NH ₃	d) None of these
455	Which has triangular planar shape?		
	a) CH_3^+ b) ClO_2^-	c) H ₃ O ⁺	d) ClO ₃
456	. With respect to chlorine, hydrogen w		
	a) Electropositive b) Electro	-	d) None of these
457	. In the case of alkali metals, the coval	ent character decreases in the order	r:
	a) $MI > MBr > MCl > MF$		
	b) $MCl > MI > MBr > MF$		
	c) $MF > MCl > MBr > MI$		
	d) $MF > MCl > MI > MBr$		
458	. The set representing the correct orde	er of ionic radius is	
	a) $Li^+ > Be^{2+} > Na^+ > Mg^{2+}$	b) $Na^{+} > Li^{+} > M_{\xi}$	$g^{2+} > Be^{2+}$
	c) $Li^{2+} > Na^+ > Mg^{2+} > Be^{2+}$	d) $Mg^{2+} > Be^{2+} >$	$Li^+ > Na^+$
459	. Which element has maximum electro	on affinity?	
	a) Na b) Mg	c) Al	d) S
460	. Ionisation potential is lowest for		
	a) Alkali metals	b) Inert gas	
	c) Halogens	d) Alkaline earth n	netals
461	. It is thought that atoms combine	with each other such that the o	outermost orbit acquires a stable
	configuration of 8 electrons. If stabil	lity were attained with 6 electrons	rather than with 8, what would be
	the formula of the stable fluoride ion	is?	
	a) F ³⁺ b) F ⁺	c) F ⁻	d) F ²⁻
462	. The outermost configuration of the le	east reactive element is	
	a) ns^2p^3 b) ns^2p^4	c) ns^2p^5	d) ns^2p^6
463	. Elements of the same vertical group	of the Periodic Table have	
	a) Same atomic number	b) Same atomic siz	ze –
	c) Same number of atoms		f electrons in outermost shell
464	. Ionisation potential for a noble gas is		
	a) Maximum in a period	b) Minimum in a p	eriod
	c) Either minimum or maximum	d) Constant	
465	. Which of the following possess maxi		
	a) MgSO ₄ b) RaSO ₄	c) SrSO ₄	d) BaSO ₄
466	The correct order of hybridization		
	BCl ₃ is:		-9 -F 3, f41 , '3
	a) dsp^2, dsp^3, sp^2, sp^3 b) sp^3, dsp^3	$n^2 \cdot dsn^3 \cdot sn^2$ c) $dsn^2 \cdot sn^2 \cdot sn^3 \cdot dsn^3 \cdot dsn^3 \cdot dsn^4 \cdot sn^3 \cdot dsn^4 \cdot sn^4 \cdot $	dsn^3 d) dsn^2 , sn^3 , sn^2 , dsn^3
467	Following statements regarding the		
107	halogens are given. Which of these st	_	
	a) The reactivity decreases in the alk		
	number down the group.	Sut mer cases in the nation	······· ······ · · · · · · · · · ·
	b) In both the alkali metals and the h	alogens the chemical reactivity dec	reases with increase in atomic
	, ser ser series in course dire in	G G Gallery Gell	

number down the group


				Gpius Education
	•	creases with increase in ato	mic number down the grou	ıp in both the alkali metals
	and halogens.	antivitus in anagaga hast in tha	halagang it dagnaagag with	in anagas in atomia numban
	down the group.	activity increases but in the	naiogens it decreases with	increase in atomic number
468		sation energy of C, N, O, F is		
400		b) $F < N < C < 0$		d) $C < O < N < F$
469	. Which has minimum ioni	•	c) c < N < 0 < 1	uj c < 0 < N < 1
10)	a) N ^{3–}	b) K ⁺	c) Na ⁺	d) F ⁻
470	•	es the ionic radii (Å) of N ³⁻	•	
	a) 1.71, 1.40, 1.36	b) 1.71, 1.36, 1.40		d) 1.36, 1.71, 1.40
471		order for which set is corre		a) 1100, 117 1, 1110
	a) Cs < Li < K	b) Cs < Li > B	c) Li > K > Cs	d) B > Li < K
472		ich shows decreasing order		
	a) $Al^{3+} > Mg^{2+} > Na^{+} >$		b) $Na^+ > Mg^{2+} > Al^{3+} >$	
	c) $Na^+ > F^- > Mg^{2+} > 0$		d) $0^2 > F^- > Na^+ > Mg^2$	
473	. Among H X , the maximun	n dipole moment is of:	,	
	a) HF	b) HCl	c) HBr	d) HI
474	. Compound formed by sp	^{3}d -hybridization will have	structure:	
	a) Trigonal bipyramidal			
	b) T-shaped			
	c) Linear			
	d) Either of these depend	ling on number of lone pair	of electrons of central ator	n
475		npanying the process given	below is,	
	$Na^+(g) + Cl^-(g) \rightarrow NaCl$			
		b) Ionization energy	•	d) Lattice energy
476			which it floats on water an	d occupies a greater volume
	of space. The open struct		LACTION	
	a) Solid state of ice	b) Its low density	c) Crystalline nature	d) Hydrogen bonding
477		nplete outershell are know		DAY C.I. I
470	a) Kernel electrons	b) Valency electrons	c) Shell electrons	d) None of the above
4/8	. Which of the following is	not a correct statement? oes in fact have square pyra	amid atmeature	
	•			
	-	vays shorter than correspor molecules can act as Lewis		
		res have no real existence	acius	
479	. Van der Waals' forces are			
1,,,	a) Inert gases only	applica to:		
	b) Rare gases only			
	c) Mixture of gases			
	d) Elementary gases only	7		
480	. The correct order of dipo			
	a) $CH_4 < NF_3 < NH_3 < F$	H_2O		
	b) $NF_3 < CH_4 < NH_3 < F$	H_2O		
	c) $NH_3 < NF_3 < CH_4 < H_4$	H_2O		
	d) $H_2O < NH_3 < NF_3 < O$	CH ₄		
481	. Which of the following sp	oecies contains three bond _l	pairs and one lone pair aro	und the central atom?
	a) NH ₂	b) PCl ₃	c) H ₂ O	d) BF ₃
482	. In H_2^- ion, the bond order	r is:		
	a) Zero	b) 1/2	c) -1/2	d) 1
483	. Which statement is corre	ect?		

	a) Pi-bond always exists v	vith sigma-bond		
	b) Pi-bond can exist indep			
	c) Sigma-bond is weaker	=		
	d) Pi-bond is less reactive	•		
48	4. Which is highest melting լ			
	a) NaCl	b) NaBr	c) NaF	d) NaI
48	The following compounds	s have been arranged in ord	der of their increasing ther	mal stabilities. Identify the
	correct order:			
	K_2CO_3 (I) $MgCO_3$ (II)			
	$CaCO_3$ (III) $BeCO_3$ (IV)			
	a) I < II < III < IV	b) IV < II < III < I	c) $IV < II < I < III$	d) II < IV < III < I
48	6. Elements of which group			
	a) Halogens	b) Alkali metals	c) Oxygen family	d) Nitrogen group
48	7. The bond order of C_2^+ is:			
	a) 1	b) 2	c) 3/2	d) 1/2
48	8. Which is not a scale of me	asuring electronegativity?		
	a) Stevenson's scale		b) Mulliken's scale	
	c) Allred-Rochow's scale		d) Pauling scale	
48	9. In the series ethane, ethyl		H bond energy is :	
	a) The same in all the thre	ee compounds		
	b) Greatest in ethane			
	c) Greatest in ethylene			
40	d) Greatest in acetylene	1 11 02-0		
49	0. Which ion is not isoelectro	740	\ ==	15 m.±
40	a) N ³⁻	b) Na ⁺	c) F ⁻	d) Ti ⁺
49	1. The ionic radii of N^{3-} , O^{2-}			1) 4 54 4 94 4 49
4.0	a) 1.36, 1.40, 1.71	b) 1.36, 1.71, 1.40	c) 1.71, 1.40, 1.36	d) 1.71, 1.36, 1.40
49	2. During change of O_2 to O_2			
40	a) π^* orbital	b) π orbital	c) σ^* orbital	d) σ orbital
49	3. Which of the following ha	_	c) Al ²⁺	d) Al ³⁺
40	a) Al	b) Al ⁺	,	a) Al ^s
49	4. The correct order of incre			4) ClO= < Cl O < ClO
40		b) $ClO_2 < Cl_2O < ClO_2$		
49	5. In the Periodic Table meta			trena
	,	oup and increases across tl oup and decreases across tl	•	
	•	-	-	
		eriod and also down the gro eriod and also down the gr	=	
1.Q	6. When sodium and chlorin	-	oup	
47	a) Released and ionic bon			
	b) Released and covalent			
	c) Absorbed and covalent			
	d) Absorbed and ionic bo			
49	7. In third row of Periodic Ta			
17	a) Electronegativity incre		b) Electronegativity decr	P25P5
	c) Ionisation energy decre		d) Atomic volume increas	
49	8. The molecule having smal		a, monne voidine mereas	,,,,
.,	a) AsCl ₃	b) SbCl ₃	c) PCl ₃	d) NCl ₃
49	9. Which of the following sta			<i>)</i> - · - · 5
-	a) It involves <i>sp</i> -orbitals of			

b) It contains a lone pair only on carbon
c) It contains a lone pair only on oxygen
d) It carbonyl, oxygen end is attached to the metal atoms
500. The hydration of ionic compounds involves:
a) Evolution of heat
b) Weakening of attractive forces
c) Dissociation into ions
d) All of the above
501. Ionic radii are
a) Inversely proportional to effective nuclear charge
b) Inversely proportional to square of effective nuclear charge
c) Directly proportional to effective nuclear charge
d) Directly proportional to square of effective nuclear charge
502. Which of the following is the atomic number of a metal?
a) 32 b) 34 c) 36 d) 38
503. The electronic configurations of four elements are given below. Arrange these elements in the correct
order of the magnitude (without sign) of their electron affinity.
XI. $2s^22p^5$
·
XII. $3s^23p^5$ XIII. $2s^22p^4$
•
•
Select the correct answer using the codes given below
a) (i) $<$ (ii) $<$ (ii) $<$ (ii) $<$ (ii) $<$ (ii) $<$ (ii) $<$ (iii) $<$ (ii) $<$ (iii) $<$ (ii
504. Which statement is correct?
a) X^+ ion is larger than X^- ion
b) X^- ion is larger in size than X atom
c) X^+ and X^- have the same size
d) X^+ ion is larger in size than X atom
505. The correct order of size of iodine species is
a) $I > I^- > I^+$ b) $I^- > I > I^+$ c) $I^+ > I > I^-$ d) $I^- > I^+ > I$
506. Which of the following statement is wrong?
a) The stability of hydrides increase from NH ₃ to BiH ₃ in group 15 of the periodic table.
b) Nitrogen cannot form $d\pi-p\pi$ bond.
c) Single N—N bond is weaker than the single P—P bond
d) N ₂ O ₄ has two resonance structure
507. Methanol and ethanol are miscible in water due to:
a) Covalent character
b) Hydrogen bonding character
c) Oxygen bonding character
d) None of the above
508. Bond order of N_2^- anion is :
a) 3.0 b) 2.0 c) 2.5 d) 1.5
509. Among the following, the number of elements showing only one non-zero oxidation state is
0, Cl, F, N, P, Sn, Tl, Na, Ti
a) 1 b) 2 c) 3 d) 4
510. The structure of ${\rm IF}_5$ can be best demonstrated as:

d) None of these

511	The correct	decreasing	order of first	ionisation	enthalnies o	f five elements	s of the secor	nd neriod is
OII	THE COLLECT	ucci casing	oraci orins	Liumsauum	citulalpies of		s of file secor	iu periou is

- a) Be > B > C > N > F
- b) N > F > C > B > Be
- c) F > N > C > Be > B
- d) N > F > B > C > Be
- 512. The correct order of second ionisation potential of carbon, nitrogen, oxygen and fluorine is:
 - a) C > N > 0 > F
- b) 0 > N > F > C
- c) 0 > F > N > C
- d) F > 0 > N > C
- 513. Of the following elements, which one has the highest electronegativity?
 - a) F

b) Cl

c) Br

- d) I
- 514. A molecule in which sp^2 -hybrid orbitals are used by the central atom in forming covalent bond is:
 - a) He-

b) SO_2

c) PCl₅

d) N_2

- 515. The hydrogen bonding is strongest in:
 - a) $0 H \cdots S$
- b) S − H · · · O
- c) $F H \cdots F$
- d) F H · · · O

- 516. In which of the following process energy is liberated?
 - a) $Cl \rightarrow Cl^+ + e$
- b) $HCl \rightarrow H^+ + Cl^-$
- c) $Cl + e \rightarrow Cl^-$
- d) $0^- + e \rightarrow 0^{2-}$
- 517. A covalent bond is formed between the atoms by the overlapping of orbitals containing:
 - a) Single electron
 - b) Paired electron
 - c) Single electron with parallel spin
 - d) Single electron with opposite spin
- 518. Which main group elements have a different number of outermost electrons than their group number?
 - a) Alkali metals
- b) Noble gases
- c) Halogens
- d) None of these

- 519. Which one of the following has the highest electronegativity?
 - a) Br

b) Cl

c) P

- d) Si
- 520. If the ionization potential for hydrogen atom is 13.6 eV, then the ionization potential for He⁺ ion should be:
 - a) 72.2 eV
- b) 54.4 eV
- c) 6.8 eV
- d) 13.6 eV
- 521. Which property is commonly exhibited by a covalent compound?
 - a) High solubility in water
 - b) Low m.p.
 - c) High electrical conductivity
 - d) High b. p.
- 522. The energy of antibonding molecular orbitals is:
 - a) Greater than the bonding M.O.
 - b) Smaller than the bonding M.O.
 - c) Equal to that of bonding M. O.
 - d) None of the above
- 523. Which is not characteristic of π -bond?
 - a) π -bond is formed when a sigma bond already formed
 - b) π -bond is formed from hybrid orbitals
 - c) π -bond may be formed by the overlapping of p-orbitals
 - d) π -bond results from lateral overlap of atomic orbitals
- 524. An atom with atomic number 20 is most likely to combine chemically with the atom whose atomic number is:
 - a) 11

b) 16

c) 18

d) 10

- 525. How does the ionisation energy of 1st group elements vary?
 - a) Increases down the group

b) Decreases down the group

c) Remains unchanged

d) Variation is not regular

526.	Which one of the followin	ng pairs is isostructural (i.e	, having the same shape an	d hybridization)?
	a) [NF ₃ and BF ₃]	b) [BF ₄ and NH ₄]	c) [BCl ₃ and BrCl ₃]	d) $[NH_3 \text{ and } NO_3^-]$
527.	Which shows the highest) L 3 31) L 3 31
	a) RbF	b) CsF	c) NaF	d) KF
528.	-	sphorus in POCl ₃ is same as	-	•
	a) P in PCl ₃	b) S in SF ₆	c) Cl and ClF ₃	d) B in BCl ₃
529.	Which does not have pyra	=	, ,	, ,
	a) SO_3^{2-}	b) NO ₃	c) NH ₃	d) $C(C_6H_5)_3^-$
530.	Dative bond is present in	, ,	, ,	, (0 0, 0
	a) SO ₃	b) NH ₃	c) BaCl ₂	d) BF ₃
531.		and H ₂ Te, the one with high	-	, 3
	a) H ₂ O because of hydrog			
	b) H ₂ Te because of higher	-		
	c) H ₂ S because of hydrog			
	d) H ₂ Se because of lower	_		
532.	· -	llides is least stable and has	doubtful existence?	
	a) CI ₄	b) GeI ₄	c) SnI ₄	d) PbI ₄
533.	Which property of haloge	ens increases from F to I?		•
	a) Electronegativity			
	b) First ionisation energy			
	c) Bond length in the mol	ecule		
	d) None of the above			
534.	Which has highest meltin	g point?	in the second	
	a) LiCl	b) BeCl ₂	c) BCl ₃	d) CCl ₄
535.	Which of the following pl	henomenon will occur whe	n two atoms of an element	with same spin of electron
	in orbitals approach each	other?		
	a) Orbitals will overlap			
	b) Orbitals will not overla	PPLUS EDUC	'ATION	
	c) Bonding will take place	THEOS EDUC	MITOIA	
	d) A diatomic molecule w	rill be formed		
536.	The least stable ion amon	g the following is		
	a) Li ⁻	b) Be ⁻	c) B ⁻	d) C ⁻
537.	The electron affinity value	es for the halogens show th	e following trend	
	a) $F < Cl > Br > I$	b) $F < Cl < Br < I$	c) $F > Cl > Br > I$	d) $F < Cl > Br < I$
538.	CO ₂ has the same geomet	ry as:		
	(A)HgCl ₂ , (B) NO ₂ , (C) SnO	Cl_4 , $(D)\operatorname{C}_2H_2$		
	a) A and C	b) B and D	c) <i>A</i> and <i>D</i>	d) C and D
539.	In which of the following	molecule, the central atom	does not have sp^3 -hybridiz	zation?
	a) CH ₄	b) SF ₄	c) BF ₄	d) NH ₄ ⁺
540.	The elements present in t	he core of earth are collecti	vely known as	
	a) Lithophiles	b) Nucleophiles	c) Chalcophiles	d) Siderophiles
541.	In the Modern Periodic Ta	able, elements are arranged		
	a) Alphabetically		b) With increasing volume	e
	c) With increasing mass		d) With increasing atomic	number
542.	Which of the ions has the	largest ionic radius?		
	a) Be ²⁺	b) Mg ²⁺	c) Ca ²⁺	d) Sr ²⁺
543.	The elements having the	electronic configuration [Kr	$[3] 4d^{10}f^{14}, 5s^2p^6d^2, 6s^2$ be	longs to
	a) s-block	b) <i>p</i> -block	c) d-block	d) f-block
544.	Some of the properties of	of the two species, NO_3^- ar	nd H ₃ O ⁺ are described be	low. Which one of them is
	correct?			

a) Dissimilar in hybr	idization for the central ato	om with different structure	
b) Isostructural with	same hybridization for the	e central atom	
c) Isostructural with	different hybridization for	the central atom	
d) Similar is hybridiz	ation for the central atom	with different structure	
545. Which compound she			
a) HCl	b) C ₂ H ₆	c) RCH ₂ CHO	d) RCH ₂ NHCH ₃
•	tial order for which set is c	=	w) 11 311 ₂ 1111 311 ₃
a) Li $> K > Cs$	b) B > Li > K	c) Cs > Li > B	d) Cs < Li < K
547. Which shows non-di	•	c) c3 / H / B	u) cs < II < K
	_	a) NCI	d) PoCl
a) BCl ₃	b) CsCl	c) NCl ₃	d) BeCl ₃
	F covalent bonds between t		12.0
a) Three	b) Two	c) Four	d) One
	hyde, although contains ϵ	enolic group but does not	give test of group with FeCl ₃
because:			
a) It is steam volatile			
b) Of intermolecular	J		
c) Of intermolecular	H-bonding		
d) All of the above			
550. Bond energy of coval	ent O — H bond in water is	:	
a) Greater than bond	energy of hydrogen bond		
b) Equal to bond ene	rgy of hydrogen bond		
c) Less than bond en	ergy of hydrogen bond		
d) None of the above			
551. Which is expected to			
a) ClO ₂	b) SO ₂	c) CO ₂	d) SiO ₂
· -	members from the same po	- · -	
a) Cl, Br	b) Ca, Cl	c) Na, Ca	d) Na, Cl
		uence is not strictly according	
against it?	ving arrangements, the seq	defice is flot strictly decoral.	ing to the property written
•	HI: increasing acid stren	ath	
•	$I_3 < SbH_3$: increasing basi	9	
	ncreasing first ionization en	_	
•	•	• •	
	$\theta_2 < \text{Pb}\theta_2$: increasing oxid		andar orbitals and antibordina
		of electrons in bonding more	ecular orbitals and antibonding
molecular orbitals is			12 171
a) Bond order	b) Proton order	c) Molecular order	d) Electron order
	oed as a molecule with residuely		
a) N ₂	b) CH ₄	c) NACl	d) BeCl ₂
	ttractive forces vary in the	order:	
a) water < alcohol <			
b) water > alcohol >			
c) alcohol > water <	ether		
d) ether $>$ water $>$ a	lcohol		
557. Which have zero dipo	ole moment?		
a) 1, 1-dichloroethen	e		
b) Cis-1, 2-dichloroe	thene		
c) Trans-1, 2-dichlor			
d) None of the above			
•	ds get dissolved in water:		
a) They involve heat	-		

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 34

b) Inter-ionic attraction is redu			•
c) Ions show dipole-ion attract	ion with water molec	ules	
d) All are correct			
559. H ₂ O boils at higher temperatur			
· · · · · · · · · · · · · · · · · · ·	lovalent bonds	c) Hydrogen bonds	d) Metallic bonds
560. Which one of the following ele			
	$Ne]3s^23p^3$	c) [Ne] $3s^23p^2$	d) [Ar] $3d^{10}$, $4s^24p^2$
561. Which element exist as a solid	=	-	
a) Br b) C		c) Hg	d) P
562. In allene structure, three carbo	n atoms are joined by	T:	
a) Three σ -and three π -bonds			
b) Two σ -and one π -bond			
c) Two σ -and two π -bonds			
d) Three π -bonds only	_		
563. Among the following statemen			
$_{\rm a)}$ NH ₃ is a better electron don	or because the lone pa	air of electron occupies sph	ierical s-orbital and is less
directional			
PH ₃ is a better electron don	or because the lone pa	air of electron occupies sp^s	-orbital and is more
directional			
$^{\rm NH_3}$ is a better electron don	or because the lone pa	air of electron occupies sp^s	-orbital and more
directional			
PH ₃ is a better electron don	or because the lone pa	air of electron occupies sph	erical s-orbital and is less
directional	S. J		C 1 C 1 . 1 C
564. Which of the following pairs sh	iow reverse propertie	s on moving along a period	from left to right and fron
top to down in a group?	CC	101	1
a) Nuclear charge and electron		b) Ionisation radius and e	lectron affinity
c) Atomic radius and electron		d) None of the above	
565. Covalent radius of Li is 123 pm	LEGS ELLIPS	LI WIII be:	123
a) $> 123 \text{ pm}$ b) $<$	< 123 pm	c) +123 pm	d) = $\frac{123}{2}$ pm
566. Bond length decreases with:			2
a) Decrease in size of the atom			
b) Increase in the number of bo		ns	
c) Decrease in bond order			
d) Decrease in the number of b	onds between the ato	ms	
567. Which of the following stateme			
Effective nuclear charge of an a	atom depends on:		
a) The atomic number of the a			
b) The charge on the ion			
c) The shielding effect			
d) Both the actual nuclear char	ge and the shielding e	effect	
568. Which of the following oxides i	s most basic?		
a) Na ₂ O b) S	iO_2	c) SO ₂	d) All are equally basic
569. Which one of the following ion	s has the highest value	e of ionic radius?	
a) Li ⁺ b) B	3+	c) 0^{2-}	d) F ⁻
570. Which has the lowest bond ang	gle?		
a) NH ₃ b) B	eF ₂	c) H ₃ 0 ⁺	d) CH ₄
571. Pauling's electronegativity valu		seful in predicting	
a) Polarity of bonds in molecul	es	b) Position of elements in	electromotive series
c) Coordination number		d) Dipole moment of various	

572. The correct order of decreasing polarisability of ic	on is:	•
a) Cl ⁻ , Br ⁻ , I ⁻ , F ⁻ b) F ⁻ , I ⁻ , Br ⁻ , Cl ⁻	c) I ⁻ , Br ⁻ , Cl ⁻ , F ⁻	d) F ⁻ , Cl ⁻ , Br ⁻ , I ⁻
573. Strongest oxidising agent among halogen is	, , ,	
a) I ₂ b) Br ₂	c) Cl ₂	d) F ₂
574. Which contains a coordinate and covalent bond?	, ,	, <u>, , , , , , , , , , , , , , , , , , </u>
a) BaCl ₂		
b) NH ₄ Cl		
c) HCl		
d) H ₂ O		
575. Which of the following acts sometimes as a metal a	and sometimes as a non-m	netal?
a) Hg b) Cl	c) K	d) At
576. The lowest ionization energy would be associated		
a) $1s^2$, $2s^2$ $2p^6$, $3s^1$ b) $1s^2$, $2s^2$ $2p^5$	c) $1s^2$, $2s^22p^6$	d) $1s^2$, $2s^22p^6$, $3s^2$
577. IP is influenced by:	, , ,	, , ,
a) Size of atom		
b) Charge on nucleus		
c) Electrons present in inner shells		
d) All of the above		
578. The bond between chlorine and bromine in BrCl ₃	is:	
a) Ionic		
b) Non-polar		
c) Polar with negative end on Br		
d) Polar with negative end on Cl		
579. The hydration energy of Mg ²⁺ is larger than that of	of:	
a) Al ³⁺ b) Na ⁺	c) Be ²⁺	d) None of these
580. Which of the following characteristics regarding h	alogens is not correct?	
a) Ionization energy decreases with increase in at	omic number.	
b) Electronegativity decreases with increase in ato	omic number.	
c) Electron affinity decreases with increase in atom	mic number.	
d) Enthalpy of fusion increases with increase in at	omic number.	
581. IP ₂ for an element is invariably higher than IP ₁ because	cause :	
a) The size of cation is smaller than its atom		
b) It is difficult to remove $'e'$ from cation		
c) Effective nuclear charge is more for cation		
d) All of the above		
582. Which of the following is correct?		
a) Decreases in bond length means increase in bo	nd strength	
b) Covalent radius of carbon is less than that of nit	trogen	
c) Single bonds are stronger than double bonds		
d) Fe (III) chloride cannot exist in the dimeric form	n Fe ₂ Cl ₆	
583. Molecular orbitals theory was proposed by:		
a) Werner b) Kossel	c) Moseley	d) Mullikan
584. Proton plays an important role in bonding .		
a) Electrovalent b) Hydrogen	c) Covalent	d) Coordinate
585. Which cannot exist on the basis of M.O. theory?		
a) C ₂ b) He ₂ ⁺	c) H ₂ ⁺	d) He ₂
586. Which of the following statement is correct?		
a) Polarization of an anion is maximum by high ch	arged cation	
b) Small sized cation minimises the polarisation	_	
c) A small anion brings about a large degree of pol	larization	

			Gpius Eaucation
	goes a high degree of polar		
587. The double bonds betw		•	
_	t right angles to each other.	1	
b) One sigma-bond and	_		
c) Two pi-bonds at rig	•		
	angle of 60° to each other		
588. Which compound amo			
a) AlCl ₃	b) AlI ₃	c) MgI ₂	d) NaI
589. Iron is tougher than so			
a) Iron atom is smaller			
b) Iron atoms are more	· -		
c) Metallic bonds are s	tronger in iron		
d) None of the above			
590. In HCHO carbon atom	-		
a) <i>sp</i>	b) sp^2	c) sp^3	d) None of these
591. Amongst the elements	with following electronic	configurations, which one	of them may have the highest
ionization energy?			
a) Ne $[3s^23 p^1]$	b) Ne[$3s^23 p^3$]	c) Ne[$3s^23 p^2$]	d) Ar $[3d^{10}4s^24p^3]$
592. In which pair, the first	atom or ion is not larger th	an the second?	
a) N, F	b) Cl ⁻ , Cl	c) 0, S	d) Fe ²⁺ , Fe ³⁺
593. The correct order of io	nic radii is:		
a) $Fe > Fe^{2+} > Fe^{3+}$	b) $0^{2-} > 0^{-} > 0^{+}$	c) $I^- > I > I^+$	d) All of these
594. Greater the dipole mor	nent:		
a) Grater is the ionic n	ature		
b) Lesser the polarity		P	
c) Smaller the ionic na	ture		
d) None of these			
595. The element with the e	electronic configuration as	$[\mathrm{Ar}]3d^{10}4s^24p^3$ represent	s a
a) Metal	b) Non-metal	c) Metalloid	d) Transition element
596. Bonded electron pairs		,	,
a) 3	b) 4	c) 6	d) 5
597. First ionisation energy		-, -	, -
a) Noble gases	8	b) Platinum metals	
c) Transition elements		d) Inner-transition ele	ments
598. According to the Period			
a) Atomic masses	,	b) Nuclear masses	
c) Atomic masses		d) Nuclear neutron-pr	oton number ratios
599. The angle between the	overlapping of one s-orbit		
a) 180°	b) 120°	c) 109°28′	d) 120°60′
600. The ionisation energy	•	•	,
a) Ba \rightarrow Ba ²⁺	b) Be \rightarrow Be ²⁺	c) $Cs \rightarrow Cs^+$	d) Li \rightarrow Li ⁺
601. Ionization energy of ni	•	,	
a) Nucleus has more at		i because.	
b) Half-filled <i>p</i> -orbitals			
c) Nitrogen atom is sm			
d) More penetration ef			
602. One would expect the		m temperature to he	
a) A network solid	b) A metallic solid	c) Non-polar liquid	d) An ionic liquid
603. The carbon atom in gra		ej non-polat nquid	aj Ali lollic liquiu
_	_	c) sn-hybridized	d) None of these

604. Which involves a bond forming process?		
a) Stretching rubber		
b) Dissolution of sugar in water		
c) Rusting of iron		
d) Emission of γ -rays by radioactive iron		
605. Which element has highest electronegativity	ty?	
a) F b) He	c) Ne	d) Na
606. The trivalent ion having largest size in lant	hanide series is	
a) Ti b) Zr	c) Hf	d) La
607. PF ₃ molecule is:		
a) Square planar b) Trigonal bipy	ramidal c) Tetrahedral	d) Trigonal pyramidal
608. When an element of very low ionisation po	tential is allowed to react with an	element of very high electron
affinity, we get:		
a) A weak ionic bond b) A strong ionic	bond c) A polar covalent bon	d d) No bond
609. Which of the following is an amphoteric ox	ide?	
a) SO ₃ b) MgO	c) Al ₂ O ₃	d) P ₄ O ₁₀
610. In which element shielding effect is not pos	ssible?	
a) H b) Be	c) B	d) N
611. One mole of magnesium in the vapour state	e absorbed 1200 kJmol ⁻¹ of energy	v. If the first and second
ionisation energies of Mg are 750 and 1450	0 kJmol^{-1} respectively, the final co	mposition of the mixture is
a) $31\% Mg^+ + 69\% Mg^{2+}$	b) $69\%Mg^+ + 31\%Mg^2$	
c) $86\% \text{Mg}^+ + 14\% \text{Mg}^{2+}$	d) $14\% \text{Mg}^+ + 86\% \text{Mg}^2$	+
612. The $Cl - C$ – Cl angle in 1, 1, 2, 2-tetrachlor	, ,	
a) 109.5° and 900° b) 120° and 109		d) 109.5° and 120°
613. In which of the following pairs bond angle:		
a) [NH ₄ ⁺], [BF ₄ ⁻] b) [NH ₄ ⁺], [BF ₃]	c) [NH ₃], [BF ₄]	d) [NH ₃], [BF ₃]
614. Polarization of electrons in acrolein may be		3 E 33 E 31
		, s ⁺ s -
a) $CH_2 = CH - CH = O$ b) $CH_2 = CH - CH$	$CH = O \qquad CH_2 = CH - CH = O$	d) $CH_2 = CH - CH = O$
615. Molecular shape of SF ₄ , CF ₄ and XeF ₄ are:		
a) The same with 2, 0 and 1 lone pair of ele	ctrons respectively	
b) The same with 1, 1 and 1 lone pair of ele		
c) Different with 0, 1 and 2 lone pairs of ele		
d) Different with 1,0 and 2 lone pairs of ele		
616. Which one is the weakest bond?	1 5	
a) Hydrogen b) Ionic	c) Covalent	d) Metallic
617. Which has the lowest anion to cation size r	_	,
a) LiF b) NaF	c) CsI	d) CsF
618. Which set has strongest tendency to form a	-	,
a) Ga, In, Te b) Na, Mg, Al	c) N, O, F	d) V, Cr, Mn
619. Which one is most polar?	-, -, -, -	-, -,,
a) CCl ₄ b) CHCl ₃	c) CH ₃ Cl	d) CH ₃ OH
620. Acetate ion contains:	2) 3113 31	.,,
a) One C, O single bond and one C, O double	e bond	
b) Two C, O single bonds	. 20114	
c) Two C, O double bonds		
d) None of the above		
621. The nodal plane in the π -bond of ethane is	located in:	
a) The molecular plane		
b) A plane parallel to the molecular plane		
s, is plant paramet to the molecular plane		

				Gplus Education
	c) A plane perpendicular	to the molecular plane whi	ich bisects the carbon-carb	on σ -bond at right angle
		•	ich contains the carbon-car	bon σ-bond
622.		pelectronic ions has lowest		
	a) Cl ⁻	b) Ca ²⁺	c) K ⁺	d) S ²⁻
623.	-		greater than that between	N and H yet the dipole
	- , ,	larger than that of $NF_3(0.2)$		
		-	dipole are in opposite dire	
	[] [le and bond dipole are in t	the opposite directions who	ereas in NF ₃ these are in the
	same direction.			
		-	nd dipole are in the same d	
		pole and bond dipole are	in the same direction w	hereas in NF ₃ these are in
	opposite directions.			
624.	In the electronic structure			
	a) 16 shared and 8 unsha	· · · · · · · · · · · · · · · · · · ·		
	b) 8 shared and 16 unsha			
	c) 12 shared and 12 unsh	•		
625	d) 18 shared and 6 unshar			
625.		ween molecules depend up		1) All -641
(2)	a) Number of electrons	b) Charge on nucleus	c) Radius of atoms	d) All of these
626.		and 348 Kcai moi -, The en	nergy required for the react	tion,
	$Mg \rightarrow Mg^{2+} + 2e^{-}$ is: a) +170 kcal	b) E26 kggl =	c) -170 kcal	d) 526 kggl
627	-	b) +526 kcal		d) –526 kcal
027.	a) It has maximum ionic of	nd NaI, the NaF has highest	. meiting point because :	
	b) It has minimum ionic c			
	c) It has associated molec			
	d) It has least molecular v			
628	Which does not show hyd		'ATTON!	
0201	a) C ₂ H ₅ OH	b) Liquid NH ₃	c) H ₂ O	d) Liquid HBr
629.			the Periodic Table as atom	
	a) Atomic radius increase		b) Oxidising power increa	
	c) Reactivity with water i		d) Maximum valency incr	
630.	•		•	onverting liquid CH ₃ OH to a
	gas?			
	a) London dispersion for	ce		
	b) Hydrogen bonding			
	c) Dipole-dipole interaction	on		
	d) Covalent bond			
631.	Which among the following	ng elements has lowest val	ue of ionisation energy?	
	a) Pb	b) Sn	c) Si	d) C
632.	Which of the atomic number	oer pairs represents eleme		
	a) 7, 15	b) 5, 12	c) 9, 17	d) 3, 12
633.		easing first ionisation ener		
	a) C > B > Be > Li	b) C > Be > B > Li	c) B > C > Be > Li	d) Be $>$ Li $>$ B $>$ C
634.		s in acetylene molecules is		D. Fr.
. o =	a) One	b) Two	c) Three	d) Five
635.			onic configuration. Starting	g with the innermost shell,
	which is the most metallic		.) 7 2004	4) T 2007
626	a) $X = 2, 8, 4$	b) $Y = 2,8,8$	c) $Z = 2, 8, 8, 1$	d) $T = 2, 8, 8, 7$
036.	maximum covalence of an	atom of an element is equ	ai (0)	

- a) Number of unpaired electrons in the *s*-and *p*-orbitals of valency shell
- b) Number of unpaired electrons in the *p*-orbitals of valency shell
- c) Total number of electrons in the *s*-and *p*-orbitals of valency shell
- d) Total number of electrons in the *p*-orbitals of valency shell
- 637. How many unpaired electrons are present in N_2^+ ?
 - a) 1

b) 2

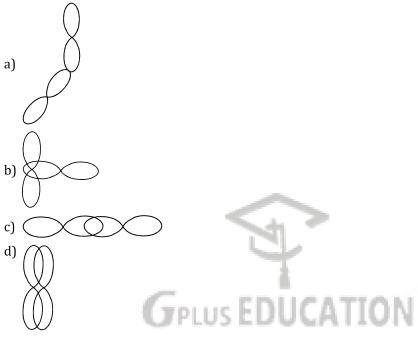
c) 3

- d) 4
- 638. Which of the following has shortest carbon-carbon bond length?
 - a) C_6H

b) C₂H₆

c) C_2H_4

d) C_2H_2


- 639. Which of the following is largest?
 - a) Cl

b) S²⁻

c) Na⁺

d) F-

640. Which *p*-orbitals overlapping would give the strongest bond?

- 641. H 0 H bond angle in H₂O is 104.5° and not 109°28′ because of:
 - a) High electronegativity of oxygen
 - b) Bond pair-bond pair repulsion
 - c) Lone pair-lone pair repulsion
 - d) Lone pair -bond pair repulsion
- 642. Which of the following statements is wrong?
 - a) The stability of hydrides increases from NH₃ to BiH₃ in group 15 of the Periodic Table.
 - b) Nitrogen cannot from $d\pi p\pi$ bond.
 - c) Single N N bond is weaker than the single P P bond.
 - d) N₂O₄ has two resonance structure.
- 643. The ratio of σ and π -bonds in benzene is:
 - a) 2

b) 6

c) 4

- d) 8
- 644. In which one of the following species, the central atom has the type of hybridization which is not the same as that present in other three?
 - a) SF₄

b) I₃

- c) SbCl₅²⁻
- d) PCl₅

- 645. Which is correct order for electron gain enthalpy?
 - a) S < 0 < Cl < F
- b) 0 < S < F < Cl
- c) Cl < F < S < 0
- d) F < Cl < 0 < S

- 646. The first ionisation energy of lithium will be
 - a) Greater than Be
- b) Less than Be
- c) Equal to that of Na
- d) Equal to that of F

- 647. When two atomic orbitals combine, they form:
- a) One molecular orbitals

	b) Two molecular orbital	S		•	
	c) Two bonding molecular orbitals				
	d) Two antibonding mole				
648.		correct order of first ionisa	tion energy is		
	a) $K > Na > Li$	b) Be $> Mg > Ca$	c) $B > C > N$	d) Ge $> Si > C$	
649.		tion of the element with ma	•	,	
	a) $1s^2$, $2s^2$, $2p^3$	b) $1s^2$, $2s^2$, $2p^5$	c) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^5$	d) $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^3$	
650.	•	as regular tetrahedral shap		w) 10 , 10 , 1p , 00 , 0p	
0001	a) $[Ni(CN)_4]^{2-}$	b) SF ₄	c) [BF ₄] ⁻	d) XeF ₄	
651	The smallest among the	, ,	c) [D1 4]	a) her 4	
0011	a) Na ⁺	b) Mg ²⁺	c) Ba ²⁺	d) Al ³⁺	
652	Coordinate compounds a	· · ·	су ва	ujin	
032.	a) Transfer of electrons	ne formed by.			
	b) Sharing of electrons				
	c) Donation of electron p	nair			
	d) None of the above	odii			
652	•	e for the long form of the Pe	oriodic Tablo is		
055.		e of filling the electrons in t		als s n d and f	
	_	table valency states of the e		z is s, p, a and f	
		•			
	-	ysical and chemical proper	ues of the elements		
([4	d) All of the above		o ovidation municipal		
054.	-	ements never show positiv		4) E	
	a) 0	b) Fe	c) Ga	d) F	
655.	- -	en a neutral gaseous atom ta	-		
	a) Ionization energy	b) Solvation energy	c) Electronegativity	d) Electron affinity	
656.	The structure of XeF ₄ is:	12 m + 1 1 1		D.D	
. 	a) Planar	b) Tetrahedral	c) Square planar	d) Pyramidal	
657.		ng is expected to have large		13.1.21	
	a) F ⁻	b) 0 ²	c) N ³⁻	d) Al ³⁺	
658.	-	noment is of the order of:		n 12	
	a) 10^{-10} esu cm	b) 10 ⁻¹⁸ esu cm	c) 10 ⁻⁶ esu cm	d) 10 ⁻¹² esu cm	
659.		and CCl ₄ , the covalent bond	character follows the order		
	a) $LiCl > BeCl_2 > BCl_3 >$	-			
	b) $LiCl < BeCl_2 < BCl_3 <$	•			
	c) $LiCl > BeCl_2 > CCl_4 >$	•			
	d) $LiCl < BeCl_2 < BCl_3 >$				
660.		ng elements has lower valu			
	a) Mg	b) Rb	c) Li	d) Ca	
661.	Identify the least stable i	on amongst the following:			
	a) Li [–]	b) Be ⁻	c) B ⁻	d) C ⁻	
662.	For the type of interacti	ons: (I) Covalent bond, (II) van der Waals' forces, (I	II) Hydrogen bonding, (IV)	
	Dipole-dipole interaction	, which represents the corr	ect order of increasing stal	oility?	
	a) $(I) < (III) < (II) < (IV)$	•			
	b) $(II) < (III) < (IV) < ($	I)			
	c) $(II) < (IV) < (III) < ($	I)			
	d) (IV) < (II) < (III) < (I)			
663.	According to Fajan's rule	polarization is more when	:		
	a) Small cation and large	anion			
	b) Small cation and smal				
	c) Large cation and large				

-			
a) NO	b) O_2^{2-}	c) 0 ₂ ⁺	d) O ₂
	ing exhibits diamagnetic behavi		D 0
a) S ²⁻ , Cl ⁻ , Ca ²⁺ , K ⁺		c) K ⁺ ,S ²⁻ ,Ca ²⁺ ,Cl ⁻	d) Cl ⁻ , Ca ²⁺ , K ⁺ , S ²⁻
_	r of the ionic radii of the given i	-	
a) HBr	b) LiBr	c) LiCl	d) AgBr
679. Van der Waals' force	-	-	-
a) 1.0 Å	b) 1.33 Å	c) 0.96 Å	d) 1.45 Å
	tance in water molecule is:		
-	the smallest of all halogens		
, _ 0 ,	t acid of all hydrogen halides		
b) F ₂ is highly react		•	
	ociate due to hydrogen bonding		
•	s a liquid unlike other hydrogen	· =	uj None of these
a) SO_4^{2-}	b) SF_4	c) SF ₂	d) None of these
· -	ulphur atom is not sp^3 -hybridiz	· -	u) 12
a) Cl_2	ing nas maximum bond energy? b) F ₂	c) Br ₂	d) I ₂
a) $F > N < 0 > C$	b) $F > N > O > C$ ing has maximum bond energy?	c) $F > N > 0 < C$	d) F < N < O = C
	order of electronegativity?	a) E > N > 0 < C	J) E < N < O C
a) 2,6	b) 2, 8	c) 2,10	d) 2, 9
-	ond pairs and lone pairs of elec		N 0 0
a) K	b) Be	c) Na	d) Mg
	lowing has maximum ionisation		
	oitals are directed towards the c		dron
	itals are all at 90° to one anothe		
	als are formed from two <i>p-</i> atom		c orbitals
	the mixing of atomic orbitals pri	_	
671. Which statement is	wrong?	>	
d) Neither sigma no			
c) Both sigma and π	-bonds		
b) π -bond			
a) Sigma bond	,		
670. Shape of molecules) - t) - r - r - r - r
a) sp, sp^2, sp^3	b) sp^3 , sp^2 , sp	c) sp^2 , sp^3 , sp	d) sp^2 , sp , sp^3
, ,	wer first) of size of the various	•	,
a) High	b) Small	c) Zero	d) Positive
	for inert gases is likely to be:	CJ 1716	aj da
a) Ba	e tendency to form covalent con b) Be	c) Mg	d) Ca
a) LiOH, Al(OH) ₃		c) $B(OH)_2$, $Be(OH)_2$	d) $Be(OH)_2$, $Zn(OH)_2$
666. The pair of amphoto	•	-) D(OH) D-(OH)	J) D - (OU) - 7 (OU)
a) $1s^2, 2s^22p^6, 3s^1$		c) $1s^2, 2s^2, 2p^6, 3s^13p^2$	a) $1s^2$, $2s^22p^3$, $3s^2$
	ch of the following electronic co	_	d) 1 o 2 2 o 2 2 o 6 2 o 2
= : :	between the value of first and	-	of elements would be
•	increase in atomic radii		
•	nt with increase in atomic radii		
-	increase in atomic radii		
a) It is independent	of atomic radii		
664. Which is correct abo	out ionisation potential?		
d) Large cation and	small anion		
			Gpius Eaucation

$\ensuremath{682}.$ The electronic configuration of sodium and	chlorine justifies:	
a) Their physical state		
b) Their reactivity		
c) The formation of electrovalent compound	d NaCl	
d) None of the above		
683. Identify the correct order of solubility of Na	₂ S, CuS and ZnS in aqueous medi	um:
a) $Cus > ZnS > Na_2S$ b) $ZnS > Na_2S >$	• CuS c) $Na_2S > CuS > ZnS$	d) $Na_2S > ZnS > CuS$
684. The correct order of radii is		
a) $N < Be < B$ b) $F^- < O^{2-} < N$	c) Na < Li < K	d) $Fe^{3+} < Fe^{2+} < Fe^{4+}$
685. The compound showing maximum covalent	character is:	
a) BI ₃ b) BCl ₃	c) BF ₃	d) BBr ₃
686. The nature of bonding in CCl ₄ and CaH ₂ :		
a) Electrovalent in both ${\rm CCl_4}$ and ${\rm CaH_2}$		
b) Covalent in CCl_4 and electrovalent in CaH	${\sf I}_2$	
c) Electrovalent in CCl_4 and covalent in CaH	${\rm I}_2$	
d) None of the above		
687. In which of the following pairs the two spec	eies are not isostructural?	
a) PCl ₄ ⁺ and SiCl ₄ b) PF ₅ and BrF ₅	c) AlF_6^{3-} and SF_6	d) CO ₃ ²⁻ and NO ₃
688. The pair of species having identical shape o	f both species:	
a) BF ₃ , PCl ₃ b) PF ₅ , IF ₅	c) CF ₄ , SF ₄	d) XeF ₂ , CO ₂
689. Which of the following halogen acids is leas	t basic?	
a) HF b) HCl	c) HBr	d) HI
690. Beryllium shows diagonal relationship with		
a) Mg b) Na	c) B	d) Al
691. The compound with the maximum dipole m		
a) <i>p</i> -dichlorobenzene b) <i>m</i> -dichloroben		d) Carbon tetrachloride
692. Which of the following molecules is covalen		•
a) HF b) NF ₃	Ph. 1 1 JP At 10 PM 10 PM 10 PM 10 PM	d) ClF ₃
693. Correct order of first ionisation potential an	1.37 % 37 %	2 9
a) B $<$ Be $<$ C $<$ O $<$ N b) B $<$ Be $<$ C $<$		
694. For making good quality mirrors, plates of f		=
over a liquid metal which does not solidify k		
a) Mercury b) Tin	c) Sodium	d) Magnesium
695. Which of the following pairs has both members	-	, ,
a) Na – Cl b) Na – Ca	c) Ca — Cl	d) Cl – Br
696. The increasing order of the first ionization e	_	•
a) $F < S < P < B$ b) $P < S < B < F$		d) B < S < P < F
697. Which of the following element has higher i		4, 5 \ 1 \ 1
a) Boron b) Carbon	c) Oxygen	d) Nitrogen
698. The correct order of acidic strength	ej oxygen	a) ma ogen
a) $Cl_2O_7 > SO_2 > P_4O_{10}$	b) $K_2O > CaO > MgO$	
c) $CO_2 > N_2O_5 > SO_3$	d) $Na_2O > MgO > Al_2$	Ω.
699. Which of the following element is metalloid	,	03
a) Bi b) Sn	c) Ge	d) C
700. The number of lone pairs of electron on Xe i	•	u) C
		d) 4
a) 1 b) 2 701. Which of the following metals exhibits more	c) 3 a than one ovidation state?	d) 4
	c) Al	d) Fo
a) Na b) Mg	•	d) Fe
702. Among the following which has the highest a) CsI b) CsF		d) NaE
aj USI DJ USF	c) LiF	d) NaF

703. The correct order of io	nic radius is		·
a) $Ti^{4+} < Mn^{7+}$	b) $^{35}Cl^- >^{37}Cl^-$	c) $K^{+} > Cl^{-}$	d) $P^{3+} > P^{5+}$
	ound does not exhibit space	isomerism due to:	
a) Presence of ions			
b) High melting point			
	forces between constituent i	ions	
-	ure of electrovalent bond		
705. The element with the l	owest ionisation potential is		
a) Na	b) K	c) Rb	d) Cs
706. Which has the largest of	listance between the carbon	hydrogen atom?	
a) Ethane	b) Ethene	c) Ethyne	d) Benzene
_	ns or ions will have same con	=	
a) Li ⁺ and He ⁻	b) Cl [–] and Ar	c) Na and K	d) F ⁺ and Ne
	ns which are electrically cha	rged are known as:	
a) Anions	b) Cations	c) Ions	d) Atoms
709. The element with atom	nic number 36 belongs tob	lock in the Periodic Table.	
a) <i>p</i>	b) <i>s</i>	c) <i>f</i>	d) <i>d</i>
710. Which bond is more po	olar?		
a) Cl — Cl	b) N — F	c) C — F	d) O — F
711. If the electronegativity	difference between two ato	ms A and B is 2.0, then the $\mathfrak p$	percentage of covalent
character in the molec	ule is		
a) 54%	b) 46%	c) 23%	d) 72%
_	ement with the highest ionis		
a) [Ne] $3s^23p^1$	b) [Ne] $3s^23p^3$	c) [Ne] $3s^23p^2$	d) [Ne] $3s^23p^4$
713. Ionization potential is	lowest for:		
a) Halogens	b) Inert gases	c) Alkaline earth metals	d) Alkali metals
714. Electron affinity is pos	itive, when		
a) O changes into O	Cypins EDU	b) 0 ⁻ changes into 0 ²⁻	
c) O changes into O ⁺	OFLOS ED O	d) Electron affinity is alw	ays negative
715. A bond with maximum	covalent character between	non-metallic elements is fo	rmed:
a) Between identical a	toms		
b) Between chemically	similar atoms		
c) Between atoms of w	ridely different electro-negat	ivities	
d) Between atoms of th	ne same size		
716. A sp^3 -hybrid orbital co	ontains :		
a) 1/4 s-character	b) 1/2 s-character	c) 2/3 s-character	d) 3/4 s-character
717. In a crystal, the atoms	are located at the positions o	of:	
a) Maximum potential			
b) Minimum potential	energy		
c) Zero potential energ	³ y		
d) Infinite potential en	ergy		
718. Water has high heat of	vaporization due to:		
a) Covalent bonding	b) H-bonding	c) Ionic bonding	d) None of the above
719. The IP_1 , IP_2 , IP_3 , IP_4 , an	d IP $_5$ of an element are 7.1	, 14.3, 34.5, 46.8, 162.2, eV 1	espectively. The element is
likely to be:			
a) Na	b) Si	c) F	d) Ca
720. Stability of hydrides ge	nerally increases with:		
a) Increase in bond an	gle		
b) Decrease in bond an	gle		
c) Decrease in resonar	ice		

				opius zaucat
	d) None of these			
7	21. The radii of F, F^- , O and O^{2-}			
	a) $0^{2-} > F^- > F > 0$	=	c) $0^{2-} > 0 > F^- > F$	d) $0^{2-} > F^{-} > 0 > F$
7	22. Which one is the strongest l			
	,	o) F — F	c) Br – F	d) Br — Cl
7	23. The low solubility of BaSO ₄	in water is due to:		
	a) Low dissociation energy			
	b) Ionic bonds			
	c) High value of lattice ener	rgy		
	d) None of the above			
7	24. The metal having highest m			
		o) Ag	c) Diamond	d) W
7	25. Which one species has the l		1	!
	•	$0) 0_{2}^{-}$	c) 0 ₂ ⁺	d) N ₂ ⁺
7	26. Arrange the following comp		ing dipole moment:	
		chlorobenzene (II)		
	o – dichlorobenzene (III) p		`	
_	-	o) II > II > IV < I < II	c) IV < I < III < II	d) IV < II < I < III
7	27. The correct order regarding			
_			c) $sp > sp^2 < sp^3$	
7	28. Molecular size of ICl and Br	₂ is nearly same, but boil	ing point of ICI is about 40°	C higher than Br ₂ . This
	might be due to:	n n. 11		
	a) I – Cl bond is stronger th	The state of		
	b) Ionisation energy of 1 <			
	c) ICl is polar where as Br ₂	is non-polar		
7	d) The size of I > size of Br			
/	29. The pair of elements having		to the second of the second	1) A1 D
7		o) Al, Si	c) Al, Mg	d) Al, B
/	30. Elements having six electro		= -	1) 7
7	-	o) Negative ion	c) Positive ion	d) Zwitter ion
/	31. In which of the following mo			
7	, ,	o) NO_2^- and NH_2^-	,	d) NO_2^- and H_2O
/	32. Na ⁺ , Mg ²⁺ , Al ³⁺ , Si ⁴⁺ are iso		lize follows the order:	
	a) $Na^+ < Mg^{2+} < Al^{3+} < Si$ b) $Na^+ > Mg^{2+} < Al^{3+} < Si$			
	,			
	c) $Na^+ < Mg^{2+} > Al^{3+} > Si$ d) $Na^+ > Mg^{2+} > Al^{3+} > Si$			
7				
/	33. Which of the following is fal			
	a) Methane molecule is tetr	-		
	b) Nickel tetrachloride is sq	• •		
	c) P ₂ O ₅ is like two pyramids	s joined at their apices		
7	d) Acetylene is non-linear	a two atoms there is a sh	aring of	
/	 In a double bond connecting a) 2 electrons 	g two atoms there is a sna o) 4 electrons	•	d) All alactrons
7	35. As we go from left to right in	-	c) 1 electron	d) All electrons
,	_	ii periou two oi the Ferio	-	anie of the elements
	a) Will change indefinitelyc) Increases at a constant ra	nto	b) Decreasesd) First increases then de	crasees
7	36. Which of the following bond		=	
′	_	o) C – H bond in CH ₄	c) $N \equiv N$ bond in N_2	d) $O = O$ bond in O_2
7	37. Which does not show inert		c) N = N Dona III N ₂	$u_1 \circ - \circ $
′	or, willen aces not show ment	pan cheeti		

a) Al	b) Sn	c) Pb	d) Thallium		
738. Resonance is due to:					
a) Delocalization of σ -electrons					
b) Delocalization of π -ele	ectrons				
c) Migration of H atoms					
d) Migration of protons					
739. The ICl molecule is:					
a) Purely covalent					
b) Purely electrovalent					
c) Polar with negative en	d on chlorine				
d) Polar with negative en					
740. H $-$ B $-$ H bond angle in					
a) 180°	b) 120°	c) 109°	d) 90°		
741. The lowest bond energy (u) 70		
a) C – C	b) N – N	c) H — H	d) O – O		
742. Which of the following el					
a) $ns^2p^6d^1$	_	c) $(n-1)s^2p^6, ns^2p^1$	d) $(n-1)s^2p^6d^{10}$, ns^1		
743. In PCl_5 molecule, P is:	(n-1)s p, ns	c) $(n-1)s p$, hs p	u) $(n-1)s p u , ns$		
a) sp^3 -hybridized	b) dsp^2 -hybridized	a) da3. bahwidinad	d) and d brokeridinad		
		c) ds^3p -hybridized	d) sp^3d -hybridized		
744. In dry ice there are in b) II 1 1 1	1) NI C.1		
a) Ionic bond	b) Covalent bond	c) Hydrogen bond	d) None of these		
745. The solubility of KCl is re		in the second se	1) ((C) (D) (A)		
a) $C_6H_6(D=0)$	b) $(CH_3)_2CO(D = 2)$	c) $CH_3OH(D = 32)$	d) $CCl_4(D=0)$		
746. The I st IEs of four consec		-	ic Table are 8.3, 11.3, 14.5		
	Which of these is the IE of	-			
a) 13.6	b) 8.3	c) 14.5	d) 11.3		
747. Which oxide is amphoter					
a) ZnO	b) CaO	c) Na ₂ O	d) BaO		
748. The correct ionic radii or		27114011			
a) $N^{3-} > 0^{2-} > F^- > Na$	9				
b) $N^{3-} > Na^+ > O^{2-} > F$	_				
c) $Na^+ > O^{2-} > N^{3-} > F$	0				
d) $O^{2-} > F^{-} > Na^{+} > N^{3}$	$S^- > Mg^{2+} > Al^{3+}$				
749. Which is a good solvent f	or ionic and polar covalent	compounds?			
a) H ₂ O	b) CH ₃ COOH	c) CCl ₄	d) Liquid NH ₃		
750. For which of the followin	g hybridization the bond a	ngle is maximum?			
a) sp^2	b) <i>sp</i>	c) sp^3	d) dsp^2		
751. Which of the following do	oes not involve covalent bo	nd?			
a) PH ₃	b) CsF	c) HCl	d) H ₂ S		
752. The correct increasing co	valent nature is:				
a) $NACl < LiCl < BeCl_2$	b) BeCl ₂ < NaCl < LiCl	c) BeCl ₂ < LiCl < NaCl	d) LiCl < NaCl < BeCl ₂		
753. The bond between atoms	s of two elements of atomic		-		
a) Covalent	b) Ionic	c) Coordinate	d) Metallic		
754. The species having octah	•	,	,		
a) SF ₆	b) BF ₄	c) PCl ₅	d) BO_3^{3-}		
755. Which of the following is	•	, ,	, 3		
a) NO	b) CN ⁻	c) N ₂	d) 0_2^{2+}		
756. In which of the following	•		, <u>-</u>		
a) HCl	b) HBr	c) HI	d) HF		
757. What bond order does 02	•	<i>5)</i> 111	uj III		
, o , i what bolld of def does of	z mave.				

					Gplus Education
	a) 1		b) 2	c) 3	d) 1/2
758.	-	ne atom differs fro	m chloride ion in the numl		
	a) Prot		b) Neutrons	c) Electrons	d) Protons and electrons
759.	-	molecule is T-sha	•		
	a) BeF		b) BCl ₃	c) NH ₃	d) ClF ₃
760.			n energy values for an elen	nent 'X' are given below	
		ionisation energy		o .	
	XVI.		$ergy = 820 \text{ kJ mol}^{-1}$		
	XVII.		$ergy = 1100 \text{ kJ mol}^{-1}$		
	XVIII.		ergy = 1500 kJ mol^{-1}		
	XIX.		ergy = 3200 kJ mol^{-1}		
			alence electron for the ato	m ' <i>X</i> '	
	a) 4		b) 3	c) 5	d) 2
761.	-	c compounds solu	ble in water contain:	,	,
	a) C, H,	-	b) C, H	c) C, H, O	d) C, S
762.	-	of the following is		, , ,	
	a) Pb ²⁺	_	b) Ge ²⁺	c) Si ²⁺	d) Sn ²⁺
763.	Which	of the following se	ets represents the collection	n of isoelectronic species?	
			b) Na ⁺ , Ca ²⁺ , Sc ³⁺ , F ⁻		d) K ⁺ , Ca ²⁺ , Sc ³⁺ , Cl ⁻
764.	-	_	•	a collection of isoelectronic s	species?
			b) Ba ²⁺ , Sr ²⁺ , K ⁺ , Ca ²⁺		d) Li ⁺ , Na ⁺ , Mg ²⁺ , Ca ²⁺
765.	-			ts the correct order of electr	, , ,
			en atomic species?	>	
		F < S < 0		c) S < 0 < Cl < F	d) $F < Cl < O < S$
766.	,			a permanent electric dipole	
	a) H ₂ S	0	b) SO ₂	c) SO ₃	d) CS ₂
767.	, -	one of the followi	ng has the highest electron	, ,	, <u>u</u>
	a) Si	1	b) P	c) Cl	d) Br
768.		ectronic configura	tion, $1s^2$, $2s^22p^6$, $3s^2$ $3p^6$ 3	d^9 represents a	-

c) Non-metallic anion

c) CO

c) SiF₄

d) Metallic cation

d) NO+

d) BF₃

a) Metal atom

a) SF₄

769. The bond order in O_2^+ is equal to bond order in: a) N_2^+ b) CN^-

770. The molecule having permanent dipole moment is:

b) XeF₄

b) Non-metal atom